

2015 Air Quality Update and Screening Assessment

for North West Leicestershire District Council

In fulfilment of

Part IV of the Environment Act 1995

Local Air Quality Management

Date: January 2016

Local Authority Officer	Gareth Rees
Department	Street Action Team Community Services
Address	North West Leicestershire District Council, Council Offices, Whitwick Road, Coalville, Leicestershire, LE67 3FJ
Telephone	01530 454545
e-mail	Environmental.protection@nwleicestershire.gov.uk
Report Reference number	NWLDC-USA-2015
Date	January 2016

Executive Summary

This Air Quality Update and Screening Assessment 2015 fulfils North West Leicestershire District Council's commitment to the Local Air Quality Management (LAQM) process. This report follows the requirements of the DEFRA guidance LAQM.TG(09) [38] and is the start of the sixth round of Review and Assessment undertaken by the District Council.

This Updating and Screening Assessment reviews the data collected during the 2014 calendar year and changes which may have occurred within the district which may affect air quality, and any improvements that have been made in the methods of predicting air quality during 2012, 2013 and 2014.

If areas are identified as not meeting the Air Quality Objectives and there is relevant exposure, then it will be necessary to proceed to a Detailed Assessment for that particular pollutant in the area identified.

The report indicates that the annual mean objective for NO₂ will not be achieved within the five previously declared AQMA's

This authority must :

- Progress action plan
- Submit 2016 Progress report.

Contents

<u>1</u>	Intro	duction	1	1
	1.1	Descri	iption of Local Authority Area	1
	1.2	Purpo	se of Report	2
	1.3	Air Qu	ality Objectives	3
	1.4	Summ	nary of Previous Review and Assessments	3
<u>2</u>	Metl	nodolog	ΙΥ	12
	2.1	Projec	ting measured annual mean roadside nitrogen dioxide	
			ntrations to future years	12
	2.2	Façad	e Correction	13
	2.3	Annua	lisation	13
	2.4	Volatil	e Correction Model	14
<u>3</u>	New	Monito	pring Data	16
	3.1	Summ	ary of Monitoring Undertaken	16
		3.1.1	Automatic Monitoring Sites	16
		3.1.2	Non-Automatic Monitoring Sites	18
	3.2	Comp	arison of Monitoring Results with Air Quality Objectives	23
		3.2.1	Nitrogen Dioxide	23
		3.2.2	Particulate Matter (PM ₁₀)	36
		3.2.3	Sulphur Dioxide	40
		3.2.4	Benzene	40
		3.2.5	Other pollutants monitored	40
		3.2.6	Summary of Compliance with AQS Objectives	40
<u>4</u>	<u>Roa</u>	d Traffio	c Sources	40
	4.1	Narrov	w Congested Streets with Residential Properties Close to the Kerb	40
	4.2	Busy S	Streets Where People May Spend 1-hour or More Close to Traffic	40
	4.3	Roads	with a High Flow of Buses and/or HGVs.	40
	4.4	Junctio	ons	41
	4.5	New F	Roads Constructed or Proposed Since the Last Round of Review and	
		Asses	sment	41
	4.6	Roads	with Significantly Changed Traffic Flows	41
	4.7	Bus ar	nd Coach Stations	41
NW	LDC (JSA 20	15	ii

<u>5</u>	Other Transport Sources				
	5.1	Airport	S	41	
	5.2	Railwa	ys (Diesel and Steam Trains)	42	
		5.2.1	Stationary Trains	42	
		5.2.2	Moving Trains	42	
	5.3	Ports (Shipping)	42	
<u>6</u>	<u>Indu</u>	strial Sc	ources	42	
	6.1	Industr	rial Installations	42	
		6.1.1	New or Proposed Installations for which an Air Quality		
			Assessment has been Carried Out	42	
		6.1.2	Existing Installations where Emissions have Increased		
			Substantially or New Relevant Exposure has been Introduced	42	
		6.1.3	New or Significantly Changed Installations with No Previous Air		
			Quality Assessment	43	
		6.1.4	Major Fuel (Petrol) Storage Depots	43	
	6.2	Petrol	Stations	43	
	6.3	Poultry	/ Farms	43	
<u>7</u>	Commercial and Domestic Sources				
	7.1	Bioma	ss Combustion – Individual Installations	43	
	7.2	Bioma	ss Combustion – Combined Impacts	43	
	7.3	Domes	stic Solid-Fuel Burning	44	
<u>8</u>	<u>Fug</u>	itive or L	Jncontrolled Sources	44	
<u>9</u>	<u>Imp</u>	ementa	tion of Action Plans	44	
<u>10</u>	<u>Con</u>	clusions	and Proposed Actions	44	
	10.1	Conclu	usions from New Monitoring Data	44	
			usions from Assessment of Sources	44	
	10.3	Propos	sed Actions	44	
<u>11</u>	<u>Refe</u>	erences		44	
	11.1	Acts a	nd Statutory Instruments and orders	48	
	11.2	British	Standards	50	
	11.3	Techni	ical guidance	50	
	11.4	Other I	Documents	50	
NW		JSA 20 ²	15	iii	

52

12 Appendices

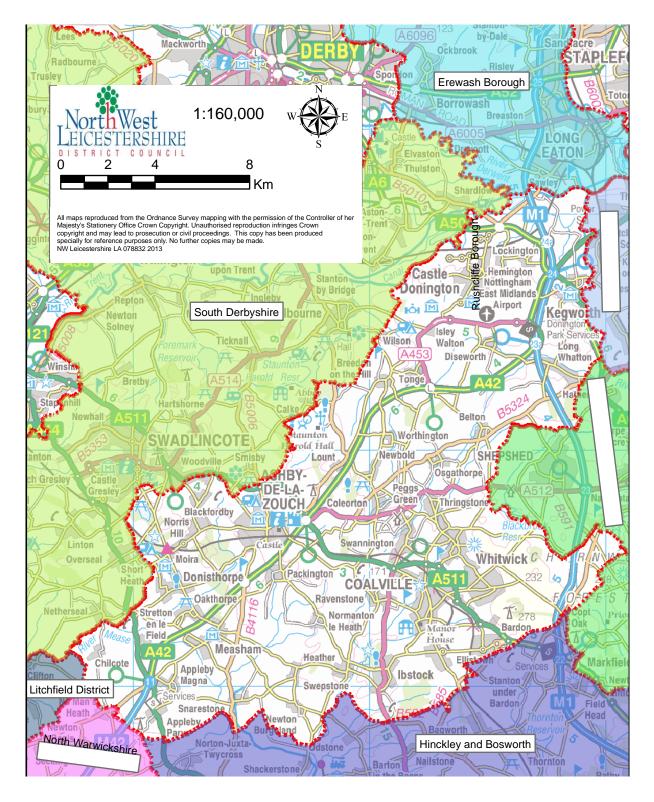
List of Tables

Table 1.	Air Quality Objectives included in Regulations for the purpose of	
	LAQM in England	3
Table 2.	Box 2.1 from Errata to LAQM.TG(09): Is the example in box 2.1 of	
	TG(09) correct?	12
Table 3.	Box 2.3: Predicting nitrogen dioxide concentrations at different	
	distances from roads?	13
Table 4.	Box 3.2: Estimation of annual mean concentrations from short-term	
	monitoring data	14
Table 5.	Application of the Volatile Correction Model	15
Table 6.	Map of Automatic Monitoring Sites	17
Table 7.	Details of Automatic Monitoring Sites	18
Table 8.	North West Leicestershire Diffusion tube monitoring locations	19
Table 9.	East Midlands Airport Diffusion tube Monitoring Locations	21
Table 10.	Results of Automatic Monitoring of Nitrogen Dioxide: Comparison	
	with Annual Mean Objective	23
Table 11.	Results of Automatic Monitoring for Nitrogen Dioxide: Comparison	
	with 1-hour mean Objective	23
Table 12.	Results of Nitrogen Dioxide Diffusion Tubes in 2014	29
Table 13.	Results of Nitrogen Dioxide Diffusion Tubes (2010 to 2014)	31
Table 14.	Facade Correction	33
Table 15.	Results of Automatic Monitoring for PM_{10} : Comparison with Annual	
	Mean Objective	36
Table 16.	Results of Automatic Monitoring for PM_{10} : Comparison with 24-hour	
	Mean Objective	37

List of Figures

Figure 1.	Map of North West Leicestershire District	1
Figure 2.	Kegworth AQMA (highlighted in blue).	7

NWLDC USA 2015


Figure 3.	M1 AQMA (Outlined in Dark Blue)	8
Figure 4.	Castle Donington Air Quality Management Area	9
Figure 5.	Coalville Air Quality Management Area (Broom Leys Junction)	10
Figure 6.	Copt Oak AQMA	11
Figure 7.	Map of Coalville Diffusion Tube Monitoring Sites	22
Figure 8.	Trends in Annual Mean Nitrogen Dioxide Concentrations measures	
	at Coalville Automatic Monitoring Site	24
Figure 9.	Trends in Annual Mean Nitrogen Dioxide Concentrations measures	
	at Castle Donington Automatic Monitoring Site	25
Figure 10.	Trends in Annual Mean Nitrogen Dioxide Concentrations measures	
	at East Midlands Airport Automatic Monitoring Site	26
Figure 11.	Trends in Annual Mean Nitrogen Dioxide Concentrations measured	
	at Diffusion Tube Monitoring Sites	35
Figure 12.	Trends in Annual Mean Particulate Matter (PM ₁₀) at Bradgate Drive	38
Figure 13.	Trends in Annual Mean Particulate Matter (PM ₁₀) at East Midlands	
	Airport	39
List of Appe	ndices	

Appendix A.	Appendix A: QA/QC Data	53
Appendix B.	Monthly Diffusion Tube, façade correction, and annualisation Data	56
Appendix C.	Automatic Monitoring Data	57

1 Introduction

1.1 Description of Local Authority Area

Figure 1. Map of North West Leicestershire District

North West Leicestershire lies in the East Midlands Region and is both the name and geographical location. The district is situated in the heart of the National Forest and lies between Leicester, Burton-on-Trent, Derby and Nottingham, covering approximately 280Km² (approximately 108 square miles). The district is mostly rural with a large extent of industry historically from coal mining, but more recently with Nottingham East Midlands Airport and large quarries.

The 2011 census found the population of the district to be 93,468[50]; the population is mainly distributed in the principle towns of Coalville and Ashby-de-la-Zouch; and the large villages of Castle Donington, Kegworth and Ibstock.

Three established main roads run through the district,

- the M42/A42 between Birmingham and Nottingham,
- the M1, and
- the A511 from Leicester to Burton-on-Trent.

1.2 Purpose of Report

This report fulfils the requirements of the Local Air Quality Management process as set out in Part IV of the Environment Act (1995), the Air Quality Strategy for England, Scotland, Wales and Northern Ireland 2007 and the relevant Policy and Technical Guidance documents. The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where exceedences are considered likely, the local authority must then declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives.

The objective of this Updating and Screening Assessment is to identify any matters that have changed which may lead to risk of an air quality objective being exceeded. A checklist approach and screening tools are used to identify significant new sources or changes and whether there is a need for a Detailed Assessment. The USA report should provide an update of any outstanding information requested previously in Review and Assessment reports.

1.3 Air Quality Objectives

The air quality objectives applicable to LAQM in England are set out in the Air Quality (England) Regulations 2000 (SI 928), The Air Quality (England) (Amendment) Regulations 2002 (SI 3043), and are shown in Table 1.1. This table shows the objectives in units of microgrammes per cubic metre μ g.m⁻³ (milligrammes per cubic metre, mg.m⁻³ for carbon monoxide) with the number of exceedences in each year that are permitted (where applicable).

	Air Quality	/ Objective	Date to be
Pollutant	Concentration	Measured as	achieved by
Benzene	16.25 µg.m⁻³	Running annual mean	31.12.2003
Denzene	5.00 µg.m⁻³	Running annual mean	31.12.2010
1,3-Butadiene	2.25 µg.m ⁻³	Running annual mean	31.12.2003
Carbon monoxide	10.0 mg.m ⁻³	Running 8-hour mean	31.12.2003
Lead	0.5 µg.m ⁻³	Annual mean	31.12.2004
Leau	0.25 µg.m ⁻³	Annual mean	31.12.2008
Nitrogen dioxide	200 µg.m ⁻³ not to be exceeded more than 18 times a year	1-hour mean	31.12.2005
	40 µg.m ⁻³	Annual mean	31.12.2005
Particles (PM ₁₀) (gravimetric)	50 µg.m ⁻³ , not to be exceeded more than 35 times a year	24-hour mean	31.12.2004
	40 µg.m ⁻³	Annual mean	31.12.2004
	350 µg.m ⁻³ , not to be exceeded more than 24 times a year	1-hour mean	31.12.2004
Sulphur dioxide	125 µg.m ⁻³ , not to be exceeded more than 3 times a year	24-hour mean	31.12.2004
	266 µg.m ⁻³ , not to be exceeded more than 35 times a year	15-minute mean	31.12.2005

 Table 1.
 Air Quality Objectives included in Regulations for the purpose of LAQM in England

1.4 Summary of Previous Review and Assessments

Six AQMAs were designated in North West Leicestershire during the first round of review and assessment for the level of nitrogen dioxide concentrations. After Further Assessments it was determined that only two

of these locations required AQMA designations and the remaining four were revoked. The Update and Screening Assessment (USA) undertaken in 2006 [1] concluded that these two sites should remain AQMAs and identified three additional locations where Detailed Assessments should be undertaken to determine whether new AQMAs were required for nitrogen dioxide concentrations. The two AQMAs designated during the first round are presented in Figure 2 and Figure 3

The Detailed Assessment [6] undertaken in September 2007 of the three locations identified as possible areas for AQMAs in the USA 2006 [1], the three locations were High Street/Bondgate in Castle Donington, Broom Leys Road, Coalville and Bardon Road, Coalville, found that exceedences of the nitrogen dioxide objective were occurring in Castle Donington at properties located next to the carriageway along High Street and Bondgate due to traffic emissions. Monitoring at both locations in Coalville identified nitrogen dioxide concentrations that exceeded the mean annual objective during 2005, 2006 and 2007. The Detailed Assessment concludes that AQMAs should be designated at all three locations. As a result of these reports, two additional AQMAs were designated; the first in Castle Donington, presented in Figure 4, and the second covering Broom Leys Road and Bardon Road in Coalville, presented in Figure 5

The Air Quality Progress Report conducted in April 2008 [7] recommended that a detailed assessment of the village of Copt Oak and the area surrounding East Midlands airport be undertaken to determine if AQMAs should be determined at these locations.

The Detailed Assessment of Copt Oak published in January 2009 [9] found that an AQMA should be declared and that the area should cross the district boundary to include an area within the borough of Hinckley and Bosworth as shown in Figure 6.

The Detailed assessment of East Midlands airport published in March 2009 [8] concluded that the Air quality objective for NO₂ would not be exceeded within 1000m of the airport as a result of air traffic emissions.

The further assessment of Bardon Road, Coalville published in February 2009 [10] supported the original declaration of the AQMA comprising the four residential properties at Broom Leys Junction and the one hundred and seventy two residential properties on Bardon Road.

The further assessment of High Street Castle Donington published in April 2009 [11] supported the original declaration of the AQMA comprising ninety one residential properties on High Street and Bondgate, Castle Donington.

The update and screening assessment published October 2009 [11] found that a detailed assessment for SO_2 was required in some areas of the district in relation to the burning of solid fuel, to which this report relates. The report also recommended that the M1 AQMA is expanded to include an exceedence of the 1-hour mean objective for NO_2 as the yearly mean has exceeded $60\mu gm^{-3}$.

The Progress Report published in April 2010 [11] found no significant change in the district.

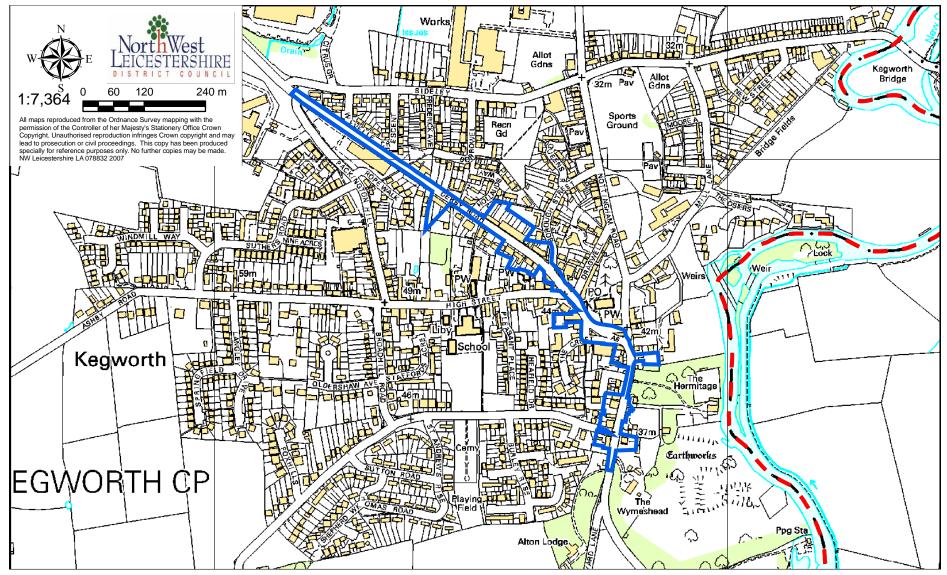
A Detailed Assessment for SO_2 was conducted in 2010 [12]. This found that solid fuel usage within off-gas areas of the district was insufficient to warrant further investigation.

A Detailed assessment of the M1 AQMA conducted in 2011 [14] found that most of the declared area could be revoked as there is either no relevant receptor or the annual mean air quality standard for NO₂ is not being exceeded.

A Detailed Assessment of the Coalville AQMA conducted in 2011 [13] found that the declared area could be reduced to the declared area of Stephenson Way as the annual mean air quality standard for NO₂ is not being exceeded along Bardon Road.

The 2011 progress report [15] found that Broomleys junction in the Coalville AQMA exceeded the 1-hour mean air quality standard for NO₂ and recommended that a detailed assessment be undertaken.

The progress report also found that the current air quality action plan is insufficient and needs to be updated.


The 2011 detailed assessment of 1-hour Mean Air Quality Standard at Broomleys junction Coalville[16] found that the 1-hour mean air quality standard was being exceeded and the AQMA should be amended.

The 2012 detailed assessment of Castle Donington[18] found that a large proportion of the AQMA was not exceeding the air quality standard and recommended the AQMA be amended.

The 2012 Further assessment of Copt Oak [19] found that a large proportion of the AQMA was not exceeding the Air Quality Standard and recommended the AQMA be amended.

The 2012 Detailed assessment of Kegworth [20] found that it was likely that most of the AQMA was exceeding the Air Quality Standard and recommended a new monitoring location was installed in the north of the AQMA.

The 2013 Further assessment of Coalville AQMA[21] found that some of its area was not exceeding the annual mean or hourly mean air quality standards for NO₂. The report recommended that a traffic survey be undertaken to further inform action planning

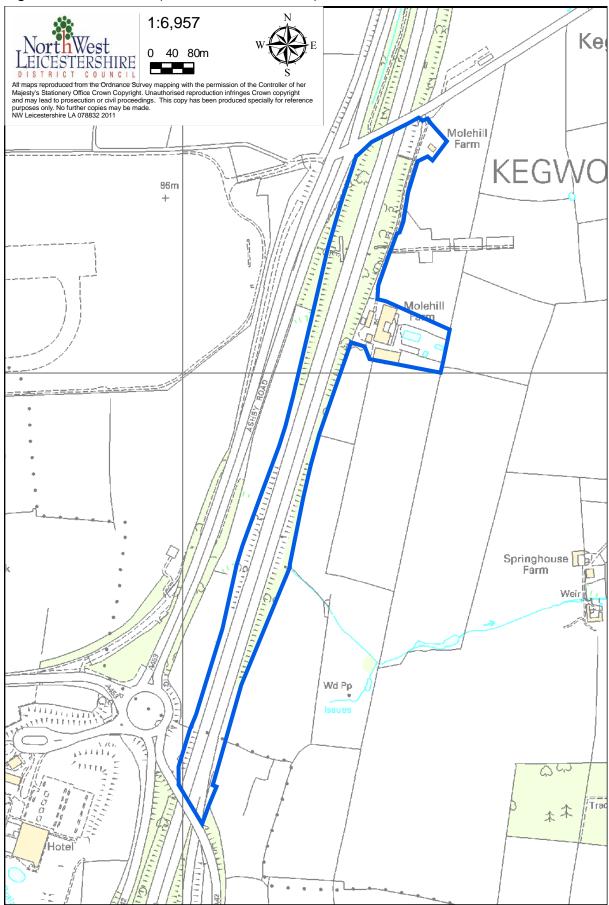


Figure 3. M1 AQMA (Outlined in Dark Blue)

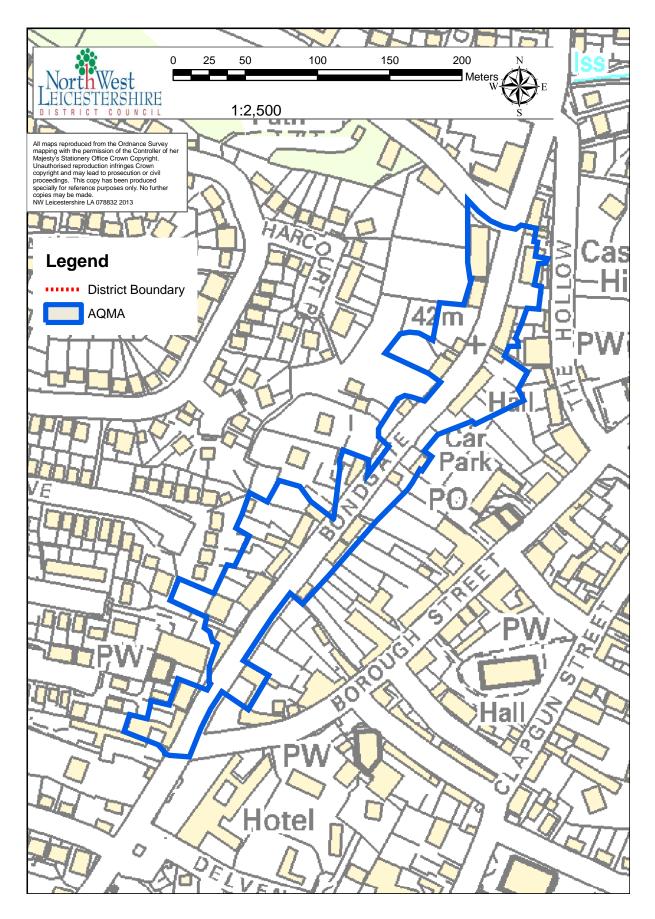


Figure 4. Castle Donington Air Quality Management Area

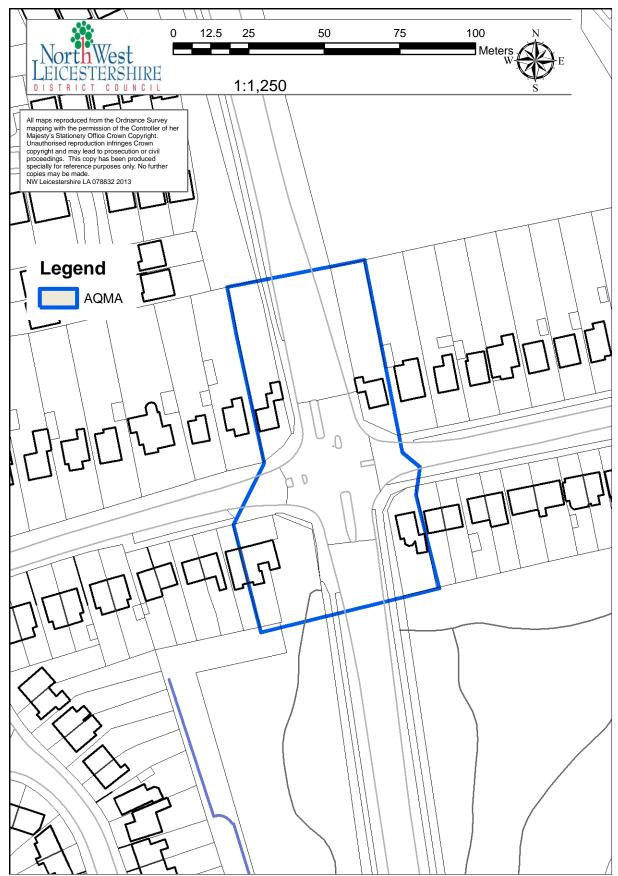
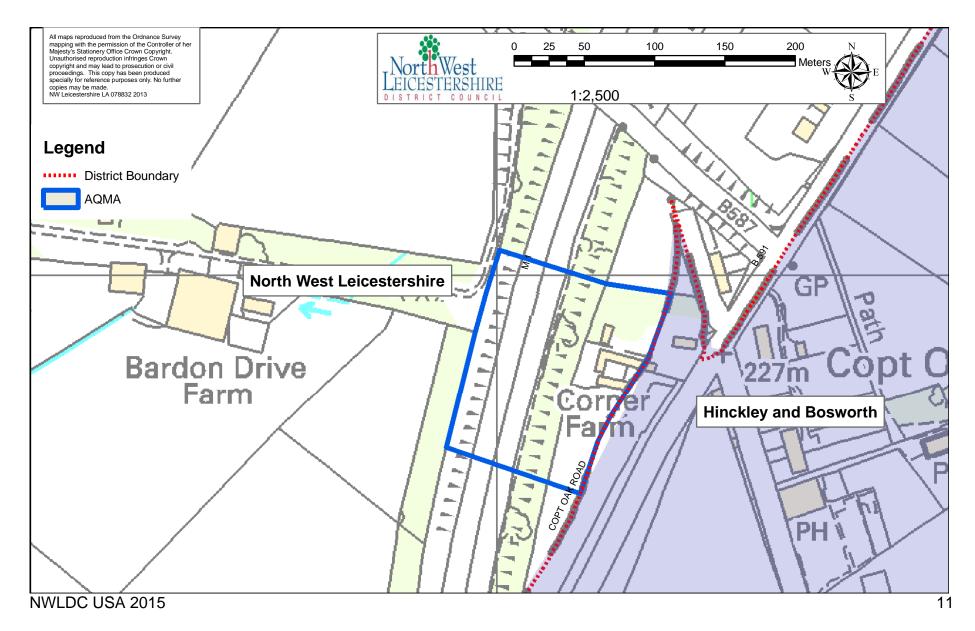



Figure 5. Coalville Air Quality Management Area (Broom Leys Junction)

Figure 6. Copt Oak AQMA

2 Methodology

2.1 Projecting measured annual mean roadside nitrogen dioxide concentrations to future years

The technical guidance LAQM.TG(09) [38] defines a method for projecting the NO_2 concentration to future years in paragraph 2.13 page 2-3 and box 2.1 on page 2-4. A correction to box 2.1 was published in an Errata published in 2010 [39]. The corrected version of Box 2.1 is reproduced in Table 2 for reference.

Table 2.
 Box 2.1 from Errata to LAQM.TG(09): Is the example in box 2.1 of TG(09) correct?

Box 2.1	Box 2.1: Projecting measured annual mean roadside nitrogen dioxide concentrations to future years						
	Ad	justment factor	r to be applied	b	Example:		
Year	Central London	Inner London	Outer London	Rest of UK	The measured NO ₂ concentration at a roadside site in Outer London in 2009		
2008	1.000	1.000	1.000	1.000	is 45.8 µgm ⁻³ . The projected		
2009	0.940	0.926	0.916	0.916	concentration for 2010 would		
2010	0.881	0.853	0.832	0.832	be		
2011	0.824	0.799	0.780	0.783	(0.832)		
2012	0.766	0.746	0.729	0.735	$45.8 \times \left(\frac{0.832}{0.916}\right) = 41.6 \mu\text{gm}^{-3}$		
2013	0.709	0.692	0.678	0.687	(0.910)		
2014	0.652	0.639	0.626	0.639	Roadside locations are		
2015	0.595	0.585	0.575	0.591	typically within 1 to 5 metres		
2016	0.554	0.549	0.542	0.557	of the kerbside, but may extend up to 15 metres		
2017	0.513	0.513	0.508	0.523	depending upon the road		
2018	0.472	0.477	0.475	0.489	configuration and traffic flow.		
2019	0.430	0.441	0.442	0.454			
2020	0.389	0.405	0.408	0.420			

Modified from Box 2.1 in Errata to TG(09): Is the example in Box 2.1 of TG(09) correct? [39] From the example given in Box 2.1 it is believed the projection factors should be used as follows

$$Y_p = Y_m \times \frac{AF_p}{AF_m}$$

Where:

 Y_p = NO₂ concentration for the Projected Year

 Y_m = Measured NO₂ Concentration

 AF_p = Adjustment factor for the year to be projected

 AF_m = Adjustment factor for the year NO₂ was measured

2.2 Façade Correction

Some diffusion tubes required a façade correction; the corrections were undertaken using the procedure outlined in Box 2.3: Predicting nitrogen dioxide concentrations at different distances from road of the technical guidance (reproduced in Table 3)

Table 3. Box 2.3: Predicting nitrogen dioxide concentrations at different distances from roads?

nonnoads?
Box 2.3: Predicting nitrogen dioxide concentrations at different distances from roads
 A method has been developed to allow NO₂ measurements made at one distance from a road to be used to predict concentrations at a different distance from the same road. It is appropriate for distances between 0.1 m and 140 m of the kerb. Step 1: Identify the local background concentration in µgm⁻³, either from local monitoring or from the national maps published at www.airquality.co.uk. (Note that the background concentration must be less than the measured concentration). Step 2: apply the following calculation
$C_{z} = \left(\frac{C_{y} - C_{b}}{-0.5476 \times Ln(D_{y}) + 2.7171}\right) \times (-0.5476 \times Ln(D_{z}) + 2.7171) + C_{b}$
Where:
C_z is the total predicted concentration (μ gm ⁻³) at distance D _z ;
C_v is the total measured concentration (µgm ⁻³) at distance D_v ;
C_b is the background concentration (μgm^{-3});
$D_{\rm v}$ is the distance from the kerb at which concentrations were measured;
D_z is the distance from the kerb (m) at which concentrations are to be predicted.
Ln(D) is the natural log of the number D.
Results derived in this way will have a greater uncertainty than the measured data. Further
assistance with this procedure and interpretation of the results can be obtained from the Review
and Assessment helpdesk (http://laqm.defra.gov.uk/helpdesks.html).
Calculator
The equation above is available as a simple calculator (available at http://lagm.defra.gov.uk/tools-
monitoring-data/NO ₂ -falloff.html). This is set up to work from 0.1 to 50 m from the kerb, as this is the
range that is likely to be relevant for Local Air Quality Management (LAQM) work. Kerbside sites
should be treated as being at 0.1 m from the kerb. The calculator works for receptors either closer
to or further from the kerb than the monitor. The greater the distance between the receptor and
monitor, the greater the uncertainty in the derived receptor concentration. It is therefore
recommended that if the receptor is further from the kerb than the monitor it should be no more than
20m away. If the receptor is closer to the kerb, then it should be no more than 10 m from the
monitor.
Modified from Box 2.3 page 2-6 of the technical Guidance 2009 [38] (modification are improved layout of
equation and insertion of updated hyperlinks where footnotes are present in the original.
0.0 Annualization

2.3 Annualisation

Where only short-term periods of monitoring data are available, the results may be adjusted to estimate an annual mean concentration using the approach set out in Box 3.2: Estimation of annual mean concentrations from short-term monitoring data of the technical guidance LAQM.TG(09) [38] (reproduced in Table 4).

Table 4. Box 3.2: Estimation of annual mean concentrations from short-term monitoring data

Box 3.2: Estimation of annual mean concentrations from short-term monitoring data

Example

It has only been possible to carry out a monitoring survey (automatic or diffusion tube) at site S for six months between July and December 2008. The measured mean concentration M for this period is 30.2µgm⁻³. How can this be used to estimate the annual mean for this location?

Adjustment to estimate annual mean

The adjustment is based on the fact that patterns in pollutant concentrations usually affect a wide region. Thus if a six month period is above average at one place it will almost certainly be above average at other locations in the region. The adjustment procedure is as follows:

 Identify two to four nearby, long-term, continuous monitoring sites, ideally those forming part of the national network. These should be background sites to avoid any very local effects that may occur at roadside sites, and should, wherever possible lie within a radius of about 50 miles.

Obtain the annual means(Am), for the calendar year for these sites, 2008 in this example. Work out the period means(Pm), for the period of interest, in this case July to December 2008. [It may be necessary to use unratified automatic data.]

Calculate the ratio, R, of the annual mean to the period mean $\left(\frac{P}{R}\right)$

 $\left(\frac{Am}{Pm}\right)$ for each of the sites.

Calculate the average of these ratios, R_a. This is then the adjustment factor. Multiply the measured period mean concentration M by this adjustment factor R_a to give the

estimate of the annual mean for 2008.

Long term site	Annual mean 2008 (Am)	Period Mean 2008 (Pm)	Ratio $\left(\frac{Am}{Pm}\right)$
A	28.6	29.7	0.963
В	22.0	22.8	0.965
С	26.9	28.9	0.931
D	23.7	25.9	0.915
	Average (I	R _a)	0.944

For this example the best estimate of the annual mean for site **S** in 2008 will be $\mathbf{M} \times \mathbf{R}_{a} = 30.2 \times 0.944 = 28.5 \mu \text{gm}^{-3}$.

Notes

Monitoring data for the long-term sites must have adequate data capture rates: above 90% is preferable; sites with data capture below 75% should not be used.

It may be appropriate to use diffusion tube results from a long-term survey to adjust short-term diffusion tube results. To allow for the greater uncertainty of diffusion tubes results from four or more sites should be used. Ensure that the tubes are from the same supplier using the same method of preparation.

If the short-term period covers, for instance, February to June 2009, and the work is being carried out in August 2009, then an annual mean for 2009 will not be available. The calculation can then be carried out using the ratio to the 2008 annual mean, but the result is then an estimate of the 2008 annual mean at the short-term site.

Modified from Box 3.2 page 3-4 of the technical Guidance 2009 [38].

2.4 Volatile Correction Model

Tapered Element Oscillating Microbalance (TEOM) analysers are widely used however, the outcome of the equivalence study means that TEOM analysers cannot strictly be used to measure PM₁₀ concentrations for comparison with the air quality objectives. Wherever possible the data collected should be adjusted using the Volatile Correction Model (VCM)

(as described in Table 5) rather than the use of a simple 1.3 multiplication factor.

Table 5. Application of the Volatile Correction Model

Box 3.4: Application of the Volatile Correction Model

A VCM web portal is available through the national air quality archive at http://www.volatilecorrection-model.info/Default.aspx This allows local authorities to download geographically specific

correction factors to apply to the TEOM PM₁₀ results. There are a number of steps that need to be taken to apply the VCM, as the default settings for the TEOMs used in the UK contain a "US EPA correction factor" and are reported at standard temperature and pressure (STP).

Step 1: Remove the default "US EPA correction factor" from the measured TEOM PM₁₀ data. TEOM instruments, as supplied by the manufacturer, include a default USEPA adjustment that is embedded into the software. This adjustment factor is:

Reported TEOM PM_{10} (µg. m⁻³) = (TEOM PM_{10} at STP (µg. m⁻³) × 1.03) + 3 µg. m⁻³ The TEOM PM_{10} concentration at STP, with the US EPA adjustment factor removed, is given by:

$$TEOM_{STP}PM_{10} = \frac{TEOMPM_{10} - 3}{1.03}$$

Step 2: Correct the measurements to atmospheric temperature and pressure

The TEOM is configured to report measurements at a standard temperature (25°C) and a standard pressure (1 atm). This differs from the European position, which reports at ambient conditions and this difference therefore increases uncertainty in the comparison with the European reference method. By using measurements of ambient temperature and pressure, the temperature and pressure correction can be removed from the TEOM measurements at STP to provide an ambient temperature and pressure TEOM measurement (TEOM_{ATP}) using the following equation:

$$TEOM_{STP}PM_{10} = \frac{TEOMPM_{10} - 3}{1.03} \times \frac{1}{P} \times \frac{T + 273}{273}$$

Where P = ambient pressure in atmospheres and T = ambient temperature in °C

Step 3: The Regional Purge Concentration

The regional purge concentration is the mean of up to three of the nearest Automatic Urban and Rural Network (AURN) FDMS instruments within the model domain. Current evidence suggests that the model domain extends to approximately 130 km from the measurement site. This is multiplied by 1.87 to account for the additional loss of volatile material from the TEOM filter, which is maintained at 50°C, compared to the FDMS filter, which is maintained at 30°C. This factor has been derived from TEOM and FDMS co-location studies.

Step 4: The calculating the TEOM_{VCM} concentration

Steps 1 and 3 can be combined into the equation below.

$$TEOM_{STP}PM_{10} = \left(\frac{TEOMPM_{10} - 3}{1000} \times \frac{1}{2} \times \frac{T + 273}{2720}\right) - (1.87 \times Regional Purge Concentration)$$

1.03 273 J These calculations will be undertaken by the VCM web portal to provide a time series of daily or hourly correction factors that can then be applied to TEOM PM₁₀ measurements as they are recorded by the instrument.

Modified from Box 3.4 page 3-11 of the technical Guidance 2009 [38].

3 New Monitoring Data

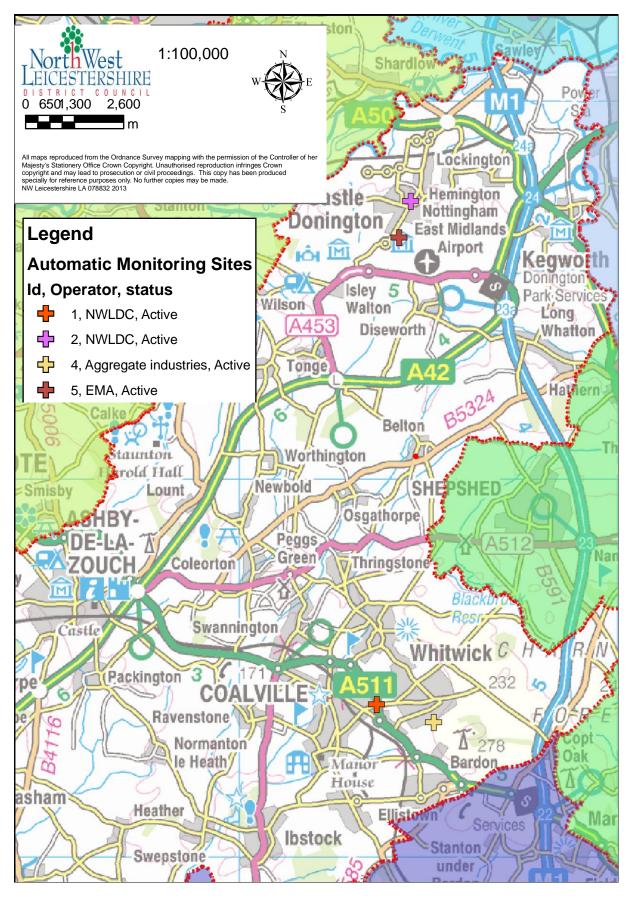
3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

3.1.1.1 Council Run Sites

Currently North West Leicestershire District Council operates 2 automatic monitors in the district located at Castle Donington, Coalville. These monitors are all located with AQMAs declared for exceedences of the nitrogen dioxide air quality standards.

Details of the sites are shown in Table 7. Full Data is available from North West Leicestershire District Council Website [50]


Both monitors are API 200A NO_x analysers

3.1.1.2 Site operated by third parties

Aggregate industries operate 1 partisol PM₁₀ monitor located on Bradgate Drive in Coalville for environmental monitoring relating to their environmental permit.

East Midlands Airport operate an automatic monitor for NO₂ as part of their environmental monitoring program.

Details of the sites are shown in Table 7.

Site ID	Site Name	Site Name	Site Name	Site Name	Site Type	OS Gr	id Ref	Pollutants Mon	Monitoring Technique	In AQMA?	Relevant Exposure? (Y/N with distance (m) to relevant exposure)	Distance to kerb o nearest road (N/A if not applicable)	Does this location represent worst-case exposure?
			x	Y	Monitored	nnique		Sure? /ant exposure)	able)	location orst-case ure?			
1	Coalville	Roadside	443660	314002	NO NO ₂ NO _x	Chemilumi nescence	Y	5.8	2	Y			
2	Castle Donington	Roadside	444534	327365	NO NO ₂ NO _x	Chemilumi nescence	Y	0	1.5	Y			
4	Bradgate Drive Coalville	Other	445147	313563	PM ₁₀	Partisol 2025 Sequential sampler	N	Y	N/A	N			
5	EMA	Other	444226	326396	NO NO ₂ NO _x PM ₁₀	Chemilumi nescence TEOM	N	N	N/A	N			

Table 7. Details of Automatic Monitoring Sites

3.1.2 Non-Automatic Monitoring Sites

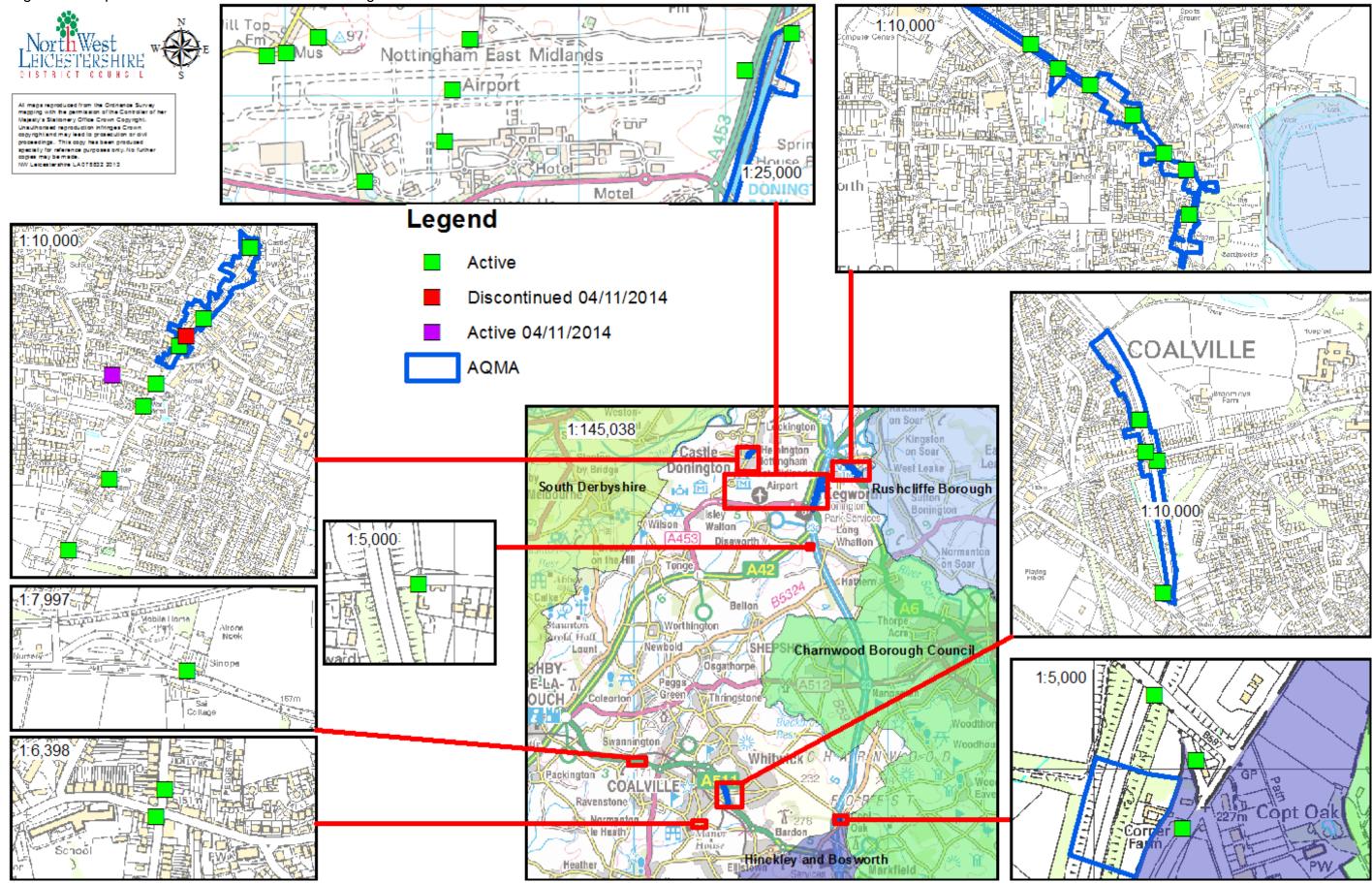
3.1.2.1 Council Run Sites

The council undertakes extensive diffusion tube monitoring within its AQMAs. Details of the tubes are shown in Table 8. Full Data is available from North West Leicestershire District Council Website [49]

3.1.2.2 East Midlands Airport run sites

The East Midlands Airport undertakes extensive diffusion tube monitoring in the area of the airport. Details of the tubes are shown in Table 9..

		Loca	Grid Re	ference	Our	Polluta	n l	Is Mor Ioca Continu	Relevar (Y/N w (m) t ex	Distance nearest r not app	۲ ۲ ۲
Site details	location	Location type	x	Y	Tube No.	Pollutant monitored	AQMA ?	Is Monitoring Co- located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) to relevant exposure)	Distance to kerb of nearest road (N/A if not applicable)	ase Location ?
06N	Broomleys junction (1)	Roadside	443632	314026	6	NO ₂	Y	Ν	5.8	2	Y
08N	End Cottage Copt Oak	Rural	448138	313012	8	NO ₂	Y	Ν	0	N/A	N
12N	AEROPARK Castle Donington	Other	444161	326355	12	NO ₂	Ν	N	Ν	N/A	Ν
14N	69 HIGH Street Castle Donington	Roadside	444216	326788	14	NO ₂	Ν	Ν	0	2.9	Y
16N	Bondgate crossroads Castle Donington	Roadside	444450	327233	16	NO ₂	Ν	Ν	7.53	1	Y
17N	13 Bondgate Castle Donington	Roadside	444512	327335	17	NO ₂	Υ	Ν	2	2.5	Y
18N	34 Bondgate Castle Donington	Roadside	444580	327411	18	NO ₂	Y	N	0	2.3	Y
19N	94 Bondgate Castle Donington	Roadside	444707	327603	19	NO ₂	Y	Ν	0.8	1.4	Y
20N	Derby Road Kegworth	Roadside	448523	326885	20	NO ₂	Y	N	3.2	1	Y
22N	Kegworth A6 2	Roadside	448817	326621	22	NO ₂	Y	N	0	2.3	Y
23N	120 Whatton Road Kegworth	Suburban	448108	326305	23	NO ₂	Ν	N	N	N/A	Y
26N	Molehill House	Roadside	447457	326420	26	NO ₂	Y	Ν	0	50	Y
31N	Sinope	Roadside	440167	315264	31	NO ₂	Ν	N	7.8	3.2	Y
32N	M1 Bridge Copt Oak	Other	448082	313100	30	NO ₂	Ν	Ν	Ν	N/A	Y
35N	Monitoring station Coalville (1)	Roadside	443660	314002	7	NO ₂	Y	Y	5.8	2	Y
36N	Monitoring station Coalville (2)	Roadside	443660	314002	27	NO ₂	Y	Y	5.8	2	Y
37N	Monitoring station Castle Donington (1)	Roadside	444534	327365	24	NO ₂	Υ	Y	0	1	Y
38N	Monitoring station Castle Donington (2)	Roadside	444534	327365	25	NO ₂	Υ	Y	0	1	Y
39N	NEW M1 LW	Other	446935	323744	11	NO ₂	Y	Ν	N	N/A	Ν


Table 8. North West Leicestershire Diffusion tube monitoring locations

		Loca	Grid Re	eference	Our	Pollutant	ln ,	Is Monitor located Continuous (Y/N	Relevant E (Y/N with (m) to r expo	Distance nearest r not ap	Worst-case ?
Site details	location	Location type	x	Y	Tube No.	nt monitored	AQMA ?	Monitoring Co- located with a tinuous Analyser (Y/N)	levant Exposure? /N with distance (m) to relevant exposure)	Distance to kerb of nearest road (N/A if not applicable)	ase Location ?
40N	35 High Street Castle Donington	Roadside	444323	326975	13	NO ₂	Ν	N	3	0.9	Y
41N	18 High Street Castle Donington	Roadside	444474	327171	15	NO ₂	Ν	N	4	1	Y
42N	Lamppost A511 W of Broomleys junction Coalville	Roadside	443613	314114	1	NO ₂	Y	Ν	16	1.9	Ν
43N	Direction Sign Bardon Rd/A511 RBT Coalville	Roadside	443675	313642	2	NO ₂	Y	Ν	2.4	3	Ν
45N	Outside corner farm Copt Oak	Roadside	448119	312920	4	NO ₂	Υ	Ν	27	4.3	N
46N	PO Derby Road Kegworth	Roadside	448724	326702	21	NO ₂	Y	N	0	1.3	Y
47N	12 Derby Rd Kegworth	Roadside	448639	326805	28	NO ₂	Y	N	4.7	2.5	Y
48N	28 London Road Kegworth	Roadside	448792	326533	29	NO ₂	Υ	N	0.8	1.5	Y
49N	Hugglescote crossroads	Roadside	442578	312871	5	NO ₂	n	N	4.1	2.5	Y
50N	10 Central Road Hugglescote	Roadside	442562	312823	10	NO ₂	n	N	5.4	1	Y
51N	40mph sign N of petrol station	roadside	448361	326997	3	NO ₂	Y	N	9.6	3.2	Y
52N	lamppost 65 Derby Road Kegworth	roadside	448436	326931	9	NO ₂	Y	N	5.9	2.5	Y
53N	20mph sign outside 10 Greenhill Road	roadside	448436	326931	24	NO ₂	Ν	N	5.9	2.5	у
54N	Parking restrictions sign adj drive 12 & 20 Park Lane Castle Donington	roadside	444331	327257	25	NO ₂	Ν	N	8.8	2.0	у

Site details	location	Location type	Grid R	eference	Pollutant monitored	In AQMA	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) to relevant exposure)	Distance to kerb of nearest road (N/A if not applicable)	Worst-case Loc
		pe	х	Y	tored	<i>;</i>				Location ?
A1	Stand 15 (amended 16)	Other	445091	325690	NO ₂	Ν	Ν	N/A	N/A	Ν
A2	Crash gate 27 ILS	Other	447136	326169	NO ₂	Ν	Ν	N/A	N/A	Ν
A3	Crash gate 4	Other	445265	326382	NO ₂	Ν	Ν	N/A	N/A	Ν
A4	Central IRVR	Other	445147	326042	NO ₂	Ν	Ν	N/A	N/A	Ν
A5	Western perimeter fence	Other	443879	326271	NO ₂	Ν	Ν	N/A	N/A	Ν
A6	Aeropark	Other	444230	326396	NO ₂	Ν	Ν	N/A	N/A	Ν
A7	Ambassador Rd	Other	444548	325418	NO ₂	Ν	Ν	N/A	N/A	Ν
A8	Aeropark (2)	Other	444230	326396	NO ₂	Ν	Y	N/A	N/A	Ν
A9	Aeropark (3)	Other	444230	326396	NO ₂	Ν	Y	N/A	N/A	Ν

Table 9. East Midlands Airport Diffusion tube Monitoring Locations

Figure 7. Map of Coalville Diffusion Tube Monitoring Sites

NWLDC USA 2015

3.2 **Comparison of Monitoring Results with Air Quality Objectives**

Nitrogen Dioxide 3.2.1

Automatic Monitoring Data 3.2.1.1

Table 10. Results of Automatic Monitoring of Nitrogen Dioxide: Comparison with Annual Mean Objective

Mean Objective									
Site ID		1	2	5					
		Coalville	Castle Donington	EMA					
Site Type		Roadside	Roadside	Other					
Within AQMA?		Y	Y	Ν					
Valid Data Capture for Monitoring Period % ^a		90.6	100	99.68					
Valid Data Capture 2014 ^b %		90.6	26.3	74.55					
2010 ^c		54.63	40.84						
Annual Mean	2011 [°]	36.96	26.9	24.83					
Concentration	2012 °	45.56	37.5	28.5					
(µg.m ⁻³)	2013 [°]	43.73	35.8	22.7					
	2014	46.93	28.39	18.25					

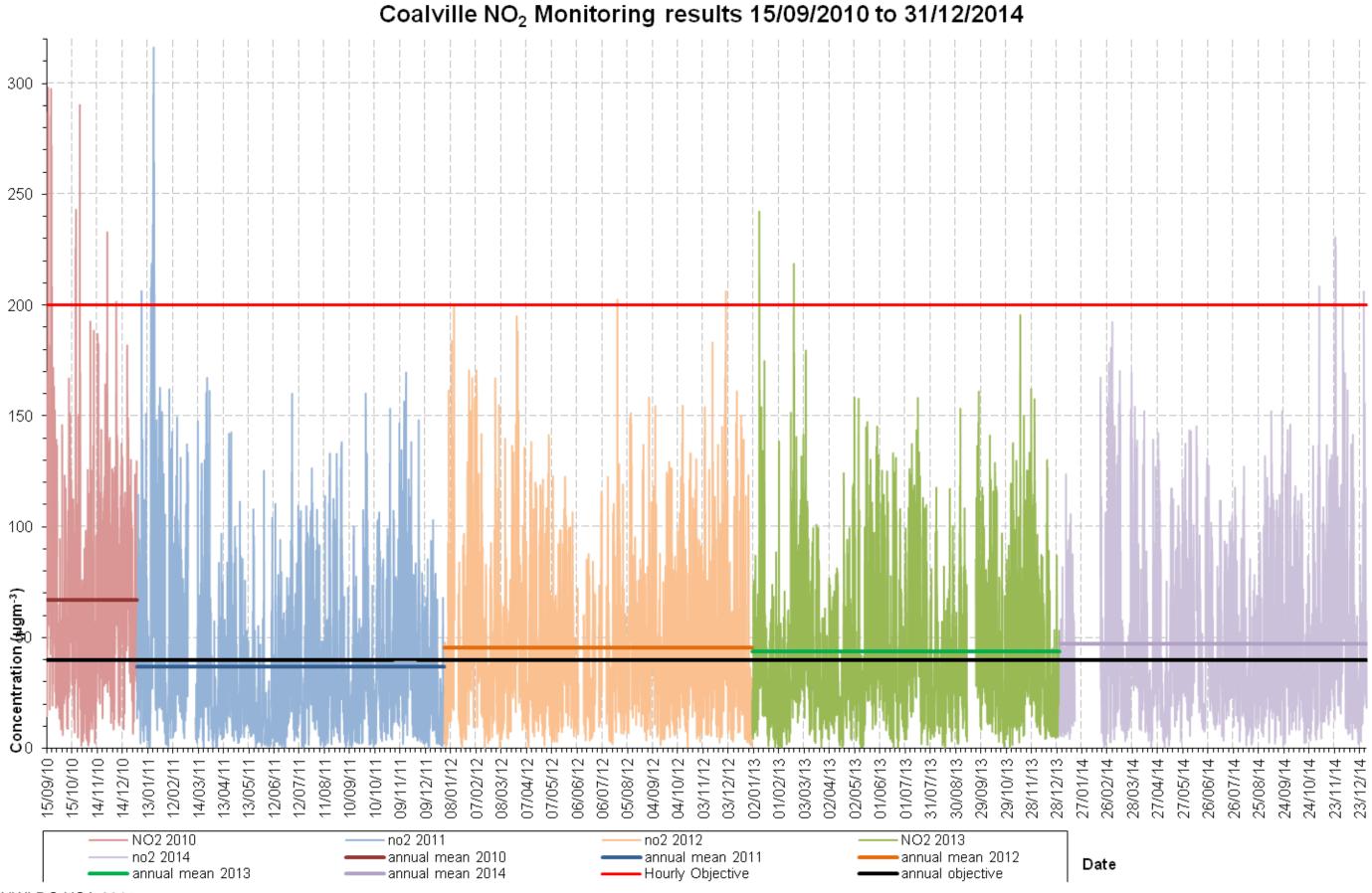
data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. а

b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%.)

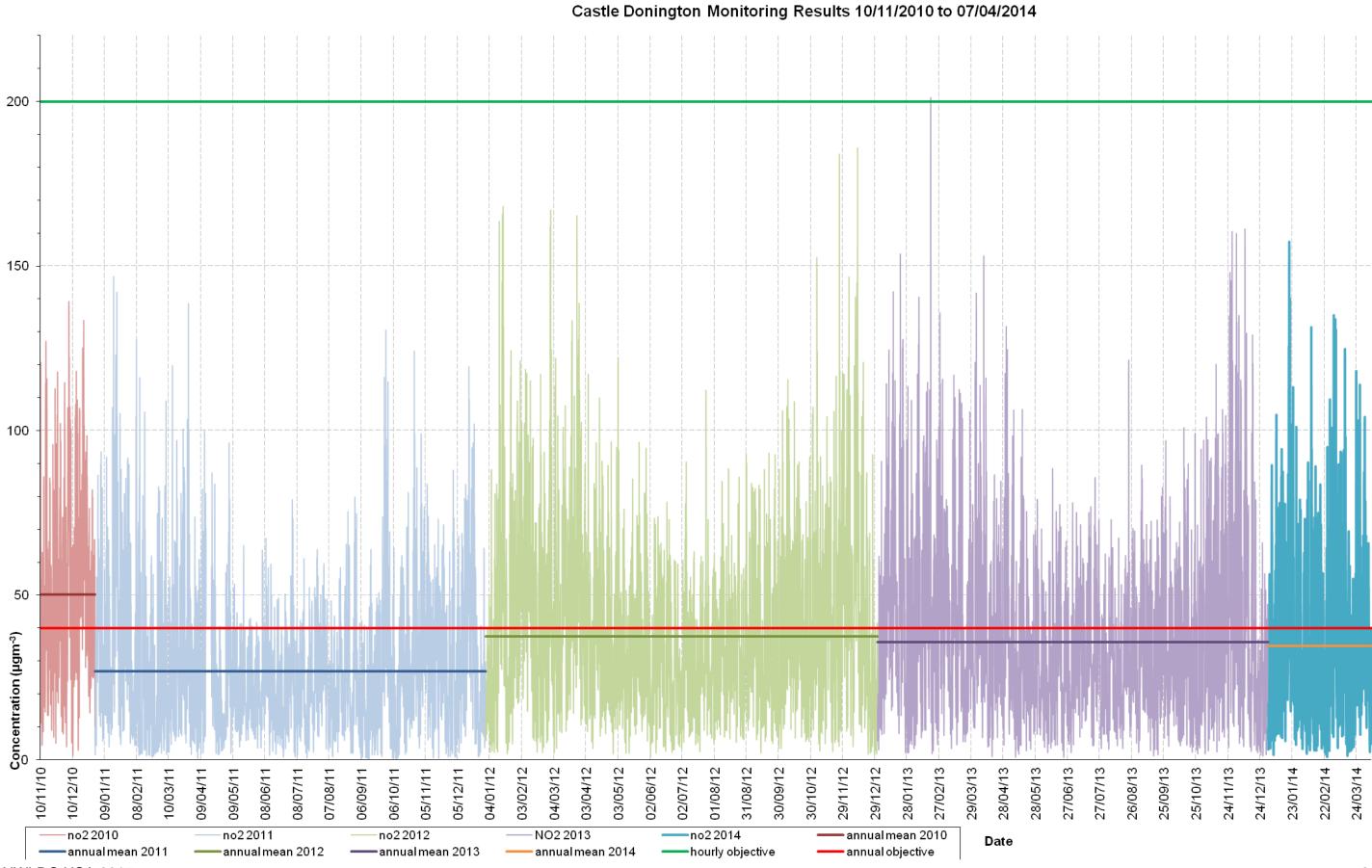
с Means should be "annualised" as in Box 3.2 of TG(09), if monitoring was not carried out for the full year. Highlighted in green

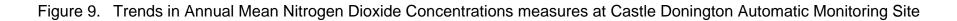
	Annualised mean (See Box 3.2 of TG(09))
???	Value exceeds Annual mean air quality standard
???	Value is approaching Annual mean air quality standard (exceeded 36µgm ⁻³)

Table 11. Results of Automatic Monitoring for Nitrogen Dioxide: Comparison with 1-hour mean Objective


	mean objective										
Si	ite ID Site Type		Within AQMA?	Valid Data Ca for period of monitoring % ^a	Valid Data C 2014 % ^b	Number of Exceedences of Hourly Mean (200 µgm ⁻³) If the period of valid data is less than 90% of a full year, include the 99.8 th percentile of hourly means in brackets.					
		AA?		apture	2010 c	2011 c	2012 c	2013 c	2014 c		
1	Coalville	Roadside	Y	90.6	90.6	29 (270. 44)	20	3	2	7	
2	Castle Donington	Roadside	Y	100	26.3	0 (130. 28)	0	0	1	0	
5	EMA	Other	N	99.68	74.55		0	0	0	0	

i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture а


b for the full calendar year would be 50%.)


If the period of valid data is less than 90%, include the 99.8th percentile of hourly means in brackets С

NWLDC USA 2015

NWLDC USA 2015

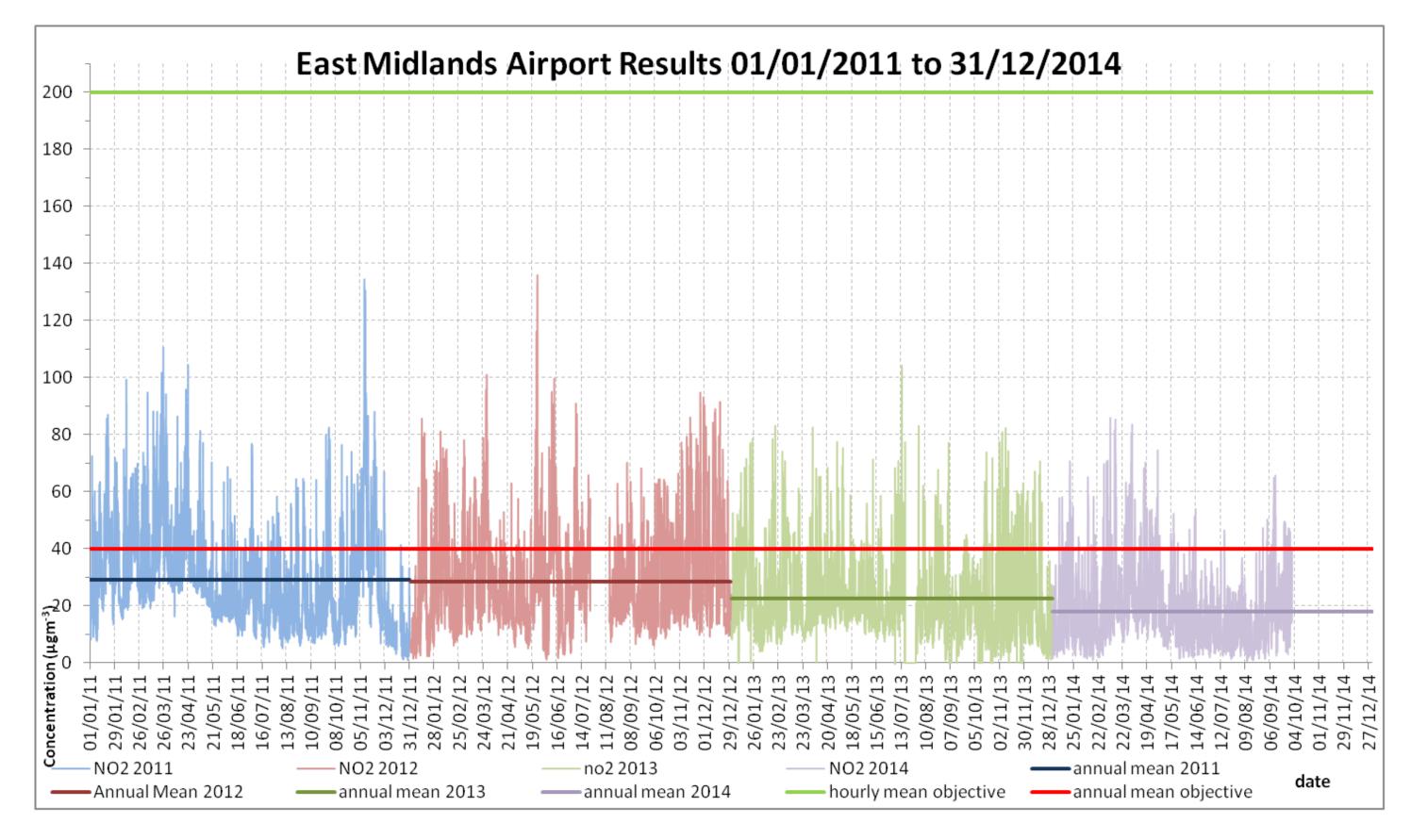


Figure 10. Trends in Annual Mean Nitrogen Dioxide Concentrations measures at East Midlands Airport Automatic Monitoring Site

3.2.1.2 Diffusion Tube Monitoring Data

An overview of the data is shown in Table 12. Façade corrections of relevant tubes is shown in Table 14. Full monitoring data is available in Appendix B.

3.2.1.2.1 Coalville

Tubes 06N 35N 36N 42N 43N are located within the Coalville AQMA. 53N is located north of the AQMA.

- Tubes 06N, 35N and 36N did not exceed the annual mean objective but exceeded 36µgm⁻³
- Tubes 42N, 43N and 53N did not exceed the annual mean objective

3.2.1.2.2 Castle Donington

Tubes 16N, 17N 18N, 19N, 37N, and 38N are located within the Castle Donington AQMA. Tubes 12N, 14N, 16N, 40N and 41N are located south of the AQMA. 54N is located west of the AQMA

- Tubes 16N, 17N, 37N and 54N did not exceed the annual mean objective but did exceed 36 µgm⁻³
- Tube 18N and 41N exceeded the annual mean objective
- Tubes 12N, 14N, 19N, 38N, and 40N did not exceed the annual mean objective

3.2.1.2.3 Copt Oak

Tube 45N is located within the AQMA. Tubes 08N and 32N are located on the façade of the nearest receptor to the M1 and level with the 'kerb' of the M1 respectively

- Tube 32N exceeded the annual mean objective.
- Tubes 08N, and 45N were significantly below the annual mean objective.

3.2.1.2.4 Kegworth

Tubes 20N, 22N, 46N, 47N, 48N, 51N and 52N are within the Kegworth AQMA. Tube 23N is a Suburban tube placed under East Midlands Airport flight path.

NWLDC USA 2015

- Tubes 46N and 48N exceeded the annual mean objective. Facade corrected annual mean of 48N was just below the annual mean objective.
- Tube 47N did not exceed the annual mean objective but did exceed 36 µgm⁻³
- Tubes 51N and 52N were below the annual mean objective but exceeded 36µgm⁻³. Both the façade corrected annual mean and the façade corrected annualised mean were both significantly below the annual mean objective
- Tubes 20N, 22N, 23N were significantly below the annual mean objective

3.2.1.2.5 M1 (Mole Hill Farm and Long Whatton)

Tube 26N is located on the façade of Molehill house within the M1 AQMA. Tube 39N is located east of the M1 between the M1 and the nearest receptor.

Both tubes were significantly below the annual mean objective

3.2.1.2.6 Other Tubes

Tube 31N is located in Sinope. It was significantly below the annual mean objective.

Tube 49N and 50N are located in Hugglescote, north of the Central Road | Station Road | Grange Road crossroads, and on the crossroads respectively. Both tubes were significantly below the annual mean objective.

Site details	location	Location type	In AQMA ?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2014 (Number of Months or %) ^a	2014 Annual Mean Concentration (µg/m ³) - Bias Adjustment factor = 0.98 ^b
06N	Broomleys junction (1)	Roadside	Y	N	100.0%	38.06
08N	End Cottage Copt Oak	Rural	Y	Ν	100.0%	26.82
12N	AEROPARK Castle Donington	Other	Ν	Ν	100.0%	21.27
14N	69 HIGH Street Castle Donington	Roadside	Ν	N	100.0%	26.69
16N	Bondgate crossroads Castle Donington	Roadside	Ν	N	100.0%	37.22
17N	13 Bondgate Castle Donington	Roadside	Y	N	100.0%	37.06
18N	34 Bondgate Castle Donington	Roadside	Y	N	100.0%	53.04
19N	94 Bondgate Castle Donington	Roadside	Y	N	100.0%	32.92
20N	Derby Road Kegworth	Roadside	Y	N	100.0%	31.28
22N	Kegworth A6 2	Roadside	Y	N	100.0%	35.69
23N	120 Whatton Road Kegworth	Suburban	Ν	N	100.0%	20.66
26N	Molehill House	Roadside	Y	N	91.7%	34.24
31N	Sinope	Roadside	N	N	91.7%	31.49
32N	M1 Bridge Copt Oak	Other	Ν	N	100.0%	53.61
35N	Monitoring station Coalville (1)	Roadside	Y	N	83.3%	38.17
36N	Monitoring station Coalville (2)	Roadside	Y	Ν	83.3%	37.52
37N	Monitoring station Castle Donington (1)	Roadside	Y	N	41.7%	39.10
38N	Monitoring station Castle Donington (2)	Roadside	Y	N	50.0%	35.94
39N	NEW M1 LW	Other	Y	Ν	91.7%	29.87

 Table 12.
 Results of Nitrogen Dioxide Diffusion Tubes in 2014

North West Leicestershire District Council

Site details	location	Location type	In AQMA ?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2014 (Number of Months or %) ^a	2014 Annual Mean Concentration (µg/m ³) - Bias Adjustment factor = 0.98 ^b
40N	35 High Street Castle Donington	Roadside	Ν	Ν	100.0%	27.81
41N	18 High Street Castle Donington	Roadside	Ν	Ν	100.0%	42.24
42N	Lamppost A511 W of Broomleys junction Coalville	Roadside	Y	Ν	83.3%	34.30
43N	Direction Sign Bardon Rd/A511 RBT Coalville	Roadside	Y	Ν	91.7%	25.83
45N	Outside corner farm Copt Oak	Roadside	Y	Ν	100.0%	33.84
46N	PO Derby Road Kegworth	Roadside	Y	Ν	100.0%	40.60
47N	12 Derby Rd Kegworth	Roadside	Y	Ν	100.0%	39.29
48N	28 London Road Kegworth	Roadside	Y	Ν	100.0%	42.22
49N	Hugglescote crossroads	Roadside	n	Ν	100.0%	33.34
50N	10 Central Road Hugglescote	Roadside	n	Ν	91.7%	34.66
51N	40mph sign N of petrol station	Roadside	Y	Ν	91.7%	36.10
52N	lamppost 65 Derby Road Kegworth	Roadside	Y	Ν	100.0%	37.31
53N	20mph sign outside 10 Greenhill Road	Roadside	Ν	Ν	16.7%	26.94
54N	Parking restrictions sign adj drive 12 & 20 Park Lane Castle Donington	Roadside	Ν	Ν	8.3%	34.82

XX	exceedence of the NO ₂ annual mean AQS objective of 40µg/m ³
<u>XX</u>	Underlined, annual mean > $60\mu g/m^3$, indicating a potential exceedence of the NO ₂ hourly mean AQS objective
XX	Annual mean is approaching the annual mean objective
	Means should be "annualised" as in Box 3.2 of TG(09)(http://laqm.defra.gov.uk/technical-guidance/index.html?d=page=38), if full
	calendar year data capture is less than 75%

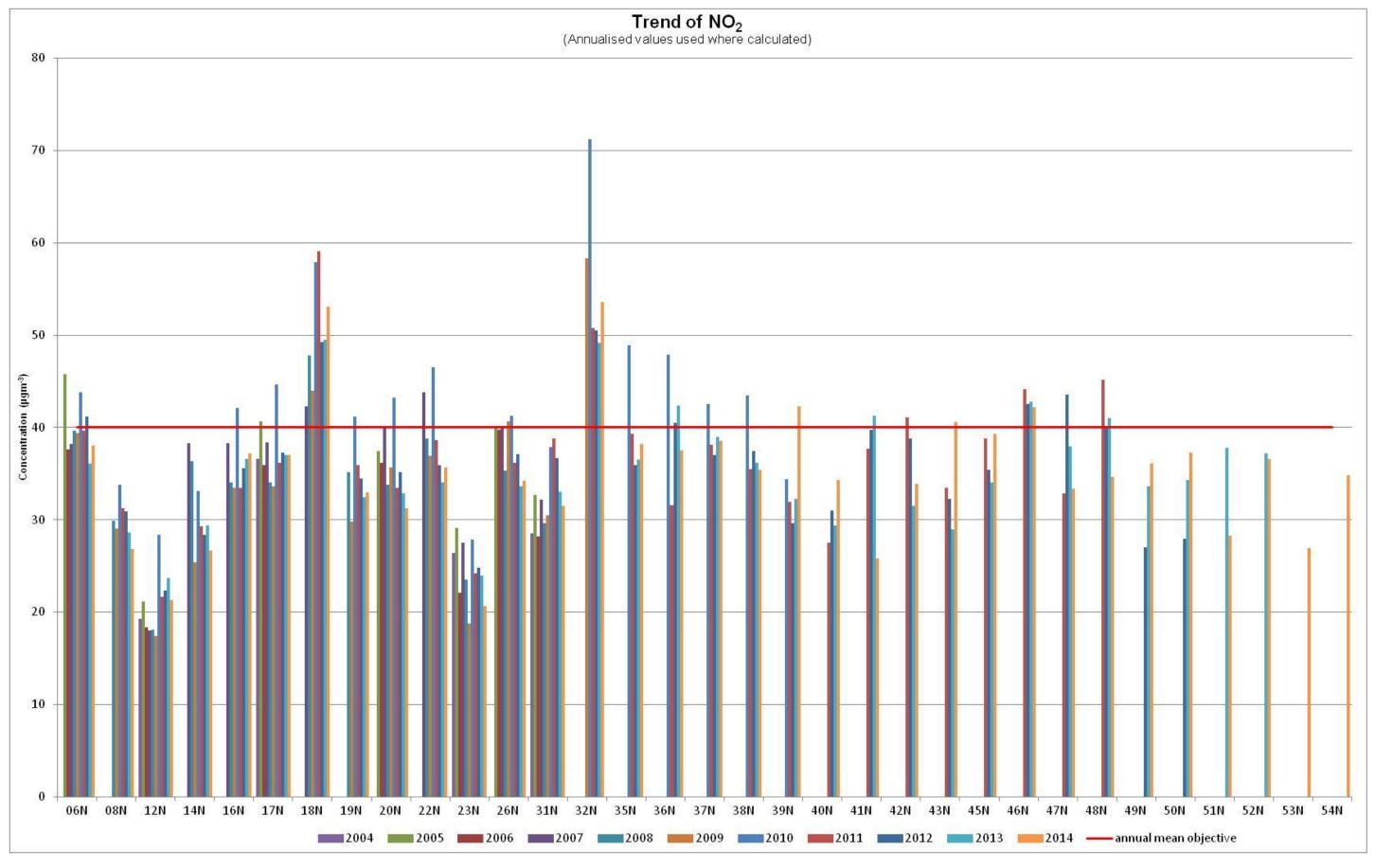
Table 13.	Results of Nitrogen	Dioxide Diffusion	Tubes ((2010 to 2014)	
-----------	---------------------	--------------------------	---------	----------------	--

			In	Annual Means					
Tube location		Location Type	AQMA	2009	2010	2011	2012	2013	2014
		pe	MA ?	0.9	1.06	1.06	0.91	0.87	0.98
06N	Broomleys junction (1)	Roadside	Y	39.37	43.77	39.66	41.18	36.11	38.06
08N	End Cottage Copt Oak	Rural	Ν	29.02	33.76	31.27	30.94	28.64	26.82
12N	AEROPARK Castle Donington	Other	Ν	17.44	28.36	21.68	22.37	23.65	21.27
14N	69 HIGH Street Castle Donington	Roadside	Ν	25.42	33.14	29.33	28.36	29.36	26.69
16N	Bondgate crossroads Castle Donington	Roadside	Ν	33.46	42.10	33.44	35.57	36.62	37.22
17N	13 Bondgate Castle Donington	Roadside	Y	33.61	44.69	36.13	37.23	37.05	37.06
18N	34 Bondgate Castle Donington	Roadside	Y	43.94	57.88	59.07	49.22	49.52	53.04
19N	94 Bondgate Castle Donington	Roadside	Y	29.78	41.14	35.95	34.43	32.41	32.92
20N	Derby Road Kegworth	Roadside	Y	35.69	43.18	33.48	35.16	32.84	31.28
22N	Kegworth A6 2	Roadside	Y	36.95	46.50	38.64	35.95	34.08	35.69
23N	120 Whatton Road Kegworth	Suburban	Ν	18.75	27.82	24.19	24.80	23.96	20.66
26N	Molehill House	Roadside	Y	40.64	41.29	36.13	37.08	33.64	34.24
31N	Sinope	Roadside	Ν	30.44	37.89	38.78	36.70	32.99	31.49
32N	M1 Bridge Copt Oak	Other	Ν	58.28	71.21	50.79	50.55	49.16	53.61
35N	Monitoring station Coalville (1)	Roadside	Y		48.90	39.32	35.95	36.54	38.17
36N	Monitoring station Coalville (2)	Roadside	Y		47.90	31.62	40.45	42.37	37.52
37N	Monitoring station Castle Donington (1)	Roadside	Y		42.57	38.16	37.01	38.99	39.10
38N	Monitoring station Castle Donington (2)	Roadside	Y		43.44	35.51	37.40	36.19	35.94
39N	NEW M1 LW	Other	Y		34.35	31.91	29.62	32.28	29.87
40N	35 High Street Castle Donington	Roadside	Ν			27.52	31.02	29.36	27.81
41N	18 High Street Castle Donington	Roadside	Ν			37.67	39.71	41.25	42.24
42N	Lamppost A511 W of Broomleys junction Coalville	Roadside	Y			41.07	38.77	31.51	34.30
43N	Direction Sign Bardon Rd/A511 RBT Coalville	Roadside	Y			33.47	32.26	28.95	25.83
45N	Outside corner farm Copt Oak	Roadside	Y			38.79	35.41	34.08	33.84
46N	PO Derby Road Kegworth	Roadside	у			44.12	42.52	42.78	40.60

North West Leicestershire District Council

		_	In			Annual	Means		
	Tube location Type		AQM	2009	2010	2011	2012	2013	2014
			MA ? tion	0.9	1.06	1.06	0.91	0.87	0.98
47N	12 Derby Rd Kegworth	Roadside	у			32.86	43.59	37.92	39.29
48N	28 London Road Kegworth	Roadside	у			45.15	40.19	40.96	42.22
49N	Hugglescote crossroads	Roadside	Ν				27.02	33.58	33.34
50N	10 Central Road Hugglescote	Roadside	Ν				27.96	34.29	34.66
51N	40mph sign N of petrol station Kegworth	Roadside	Y					37.78	36.10
52N	lamppost 65 Derby Road Kegworth	Roadside	Y					37.19	37.31
53N	20mph sign outside 10 Greenhill Road	Roadside	Ν						26.94
54N	Parking restrictions sign adj drive 12 & 20 Park Lane Castle Donington	Roadside	Ν						34.82

XX	exceedence of the NO ₂ annual mean AQS objective of 40μ g/m ³
<u>XX</u>	Underlined, annual mean > $60\mu g/m^3$, indicating a potential exceedence of the NO ₂ hourly mean AQS objective
XX	Annual mean is approaching the annual mean objective
	Means should be "annualised" as in Box 3.2 of TG(09)(http://laqm.defra.gov.uk/technical-guidance/index.html?d=page=38), if full
	calendar year data capture is less than 75%
	Not Monitored


Table 14.	Facade Correction

	location		façade correction - fall-off in nitrogen dioxide concentrations with distance from road See Box 2.3 pg 2-6 of LAQM.TG(09)						
Site Code		Location Type	background concentration grid reference		relevant background concentration	receptor correction for roadside tubes (Bias adjusted mean used)	receptor correction for roadside tubes (annualised Bias adjusted mean used)		
			Х	Y		mean useu)			
06N	Broomleys junction (1)	Roadside	443500	313500	13.82	30.33			
08N	End Cottage Copt Oak	Rural	447500	312500	19.36	Not Roadside			
12N	AEROPARK Castle Donington	Other	443500	325500	13.83	Not Roadside			
14N	69 HIGH Street Castle Donington	Roadside	443500	326500	13.85	N/A			
16N	Bondgate crossroads Castle Donington	Roadside	443500	326500	13.85	27.12			
17N	13 Bondgate Castle Donington	Roadside	443500	326500	13.85	33.68			
18N	34 Bondgate Castle Donington	Roadside	444500	326500	19.41	N/A			
19N	94 Bondgate Castle Donington	Roadside	444500	327500	16.28	31.29			
20N	Derby Road Kegworth	Roadside	447500	326500	26.14	29.79			
22N	Kegworth A6 2	Roadside	448500	326500	18.59	N/A			
23N	120 Whatton Road Kegworth	Suburban	447500	325500	23.30	Not Roadside			
26N	Molehill House	Roadside	446500	325500	23.74	N/A			
31N	Sinope	Roadside	439500	314500	10.90	24.80			
32N	M1 Bridge Copt Oak	Other	447500	312500	19.36	Not Roadside			
35N	Monitoring station Coalville (1)	Roadside	443500	313500	13.82	30.41			
36N	Monitoring station Coalville (2)	Roadside	443500	313500	13.82	29.96			
37N	Monitoring station Castle Donington (1)	Roadside	443500	326500	15.82	N/A			
38N	Monitoring station Castle Donington (2)	Roadside	443500	326500	15.82	N/A			

NWLDC USA 2015

North West Leicestershire District Council

39N	NEW M1 LW	other	446500	323500	19.18	Not Roadside	
40N	35 High Street Castle Donington	roadside	443500	326500	13.85	23.77	
41N	18 High Street Castle Donington	roadside	443500	326500	13.85	33.03	
42N	Lamppost A511 W of Broomleys junction Coalville	roadside	443500	313500	13.82	23.67	
43N	Direction Sign Bardon Rd/A511 RBT Coalville	roadside	443500	313500	13.82	24.00	
45N	Outside corner farm Copt Oak	roadside	447500	312500	19.36	25.63	
46N	PO Derby Road Kegworth	roadside	448500	326500	18.59	N/A	
47N	12 Derby Rd Kegworth	roadside	448500	326500	18.59	33.88	
48N	28 London Road Kegworth	roadside	448500	325500	15.85	39.74	
49N	Hugglescote crossroads	roadside	442500	312500	12.27	28.29	
50N	10 Central Road Hugglescote	roadside	442500	312500	12.27	26.28	
51N	40mph sign N of petrol station Kegworth	roadside	447500	326500	26.14	32.46	
52N	lamppost 65 Derby Road Kegworth	roadside	447500	326500	26.14	33.96	
53N	20mph sign outside 10 Greenhill Road	roadside	447500	326500	26.14	27.64	26.70
54N	Parking restrictions sign adj drive 12 & 20 Park Lane Castle Donington	roadside	443500	326500	13.85	27.58	25.27

NWLDC USA 2015

North West Leicestershire District Council

3.2.2 Particulate Matter (PM₁₀)

3.2.2.1 Bradgate Drive

The annual mean objective was not exceeded

The site recorded 12 exceedences of the daily mean objective this is well below the 35 permitted exceedences.

3.2.2.2 East Midlands Airport

The annual mean was not exceeded

The site recorded 5 exceedences of the daily mean objective this is well below the 35 permitted exceedences.

Table 15. Results of Automatic Monitoring for PM10: Comparison with Annual Mean Objective

Site ID		4 Bradgate Drive Coalville	5 EMA
Site Type		Suburban	Other
Within AQMA?		Ν	Ν
Valid Data Capture for Monitoring	93.97	74.79	
Valid Data Capture 2014 % ^b	93.97	74.79	
Confirm Gravimetric Equivalent (Y	′ or N/A)	Υ	N/A
	2011* ^c	21.73	19.26
Annual Mean Concentration (µg/m³)	2012* ^c	19.93	17.63
	2013* ^c	21.67	18.36
	2014 ^c	22.23	17.12

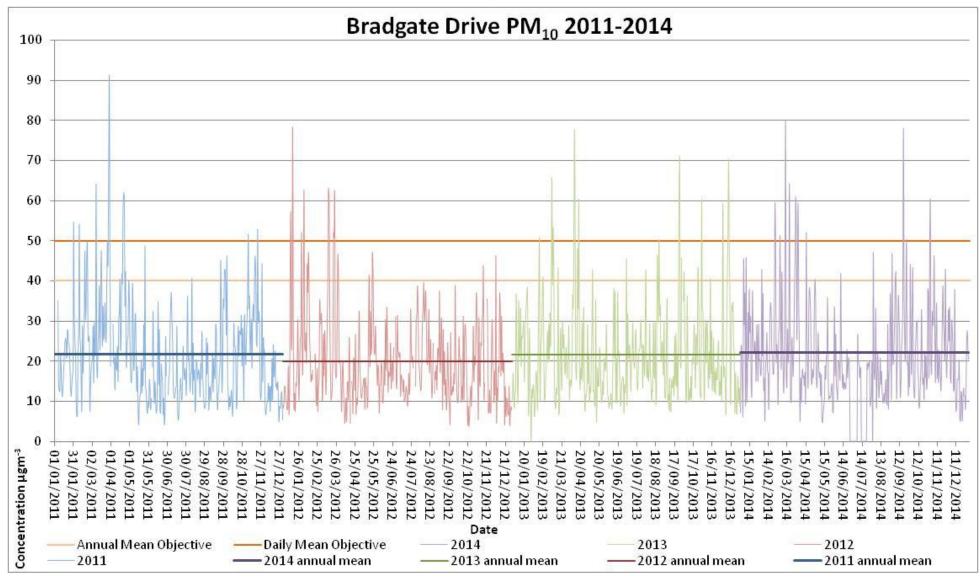
In bold, exceedence of the PM₁₀ annual mean AQS objective of 40µg.m⁻³

i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

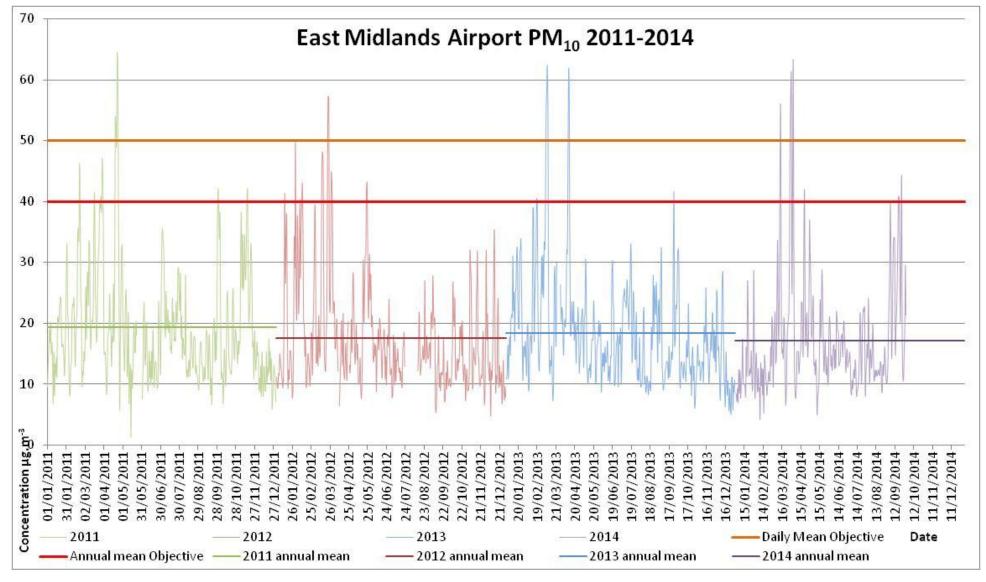
^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

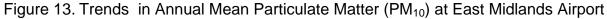
- ^c Means should be "annualised" <u>as in Box 3.2 of TG(09)</u> (<u>http://laqm.defra.gov.uk/technical-guidance/index.html?d=page=38</u>), if valid data capture is less than 75%
- * Annual mean concentrations for previous years are optional

TEOM corrected as Box 3.4 Application of Volatile Correction Model of
LAQM.TG(09)


Table 16.	Results of Automatic Monitoring for PM ₁₀ : Comparison with 24-hour Mean
	Objective

Site ID		4 Bradgate Drive Coalville	5 EMA
Site Type		Suburban	Other
Within AQMA?		N	Ν
Valid Data Capture for Monitoring Period % ^a		93.97	74.79
Valid Data Capture 2013 % ^b		93.97	74.79
Confirm Gravimetric Equivalent (Y or N/A)		Υ	N/A
Number of Daily Means > 50µg/m ³	2011 ^{* °}	11	4
	2012* [°]	9	2
	2013* ^c	14	6
	2014	12	5


In bold, exceedence of the PM₁₀ daily mean AQS objective (50µg.m⁻³ – not to be exceeded more than 35 times per year)


- ^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year
- i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)
- ^c if data capture for full calendar year is less than 90%, include the 90.4th percentile of 24hour means in brackets
- * Number of exceedences for previous years is optional

TEOM corrected as Box 3.4 Application of Volatile Correction Model of
LAQM.TG(09)

3.2.3 Sulphur Dioxide

This authority does not currently monitor this pollutant

3.2.4 Benzene

This authority does not currently monitor this pollutant

3.2.5 Other pollutants monitored

This authority does not currently monitor any other pollutants

3.2.6 Summary of Compliance with AQS Objectives

North West Leicestershire District Council has examined the results from monitoring in the district. Concentrations outside of the AQMA are all below the objectives at relevant locations, therefore there is no need to proceed to a Detailed Assessment.

4 Road Traffic Sources

4.1 Narrow Congested Streets with Residential Properties Close to the Kerb

North West Leicestershire District Council confirms that there are no new/newly identified congested streets with a flow above 5,000 vehicles per day and residential properties close to the kerb, that have not been adequately considered in previous rounds of Review and Assessment.

4.2 Busy Streets Where People May Spend 1-hour or More Close to Traffic

North West Leicestershire District Council confirms that there are no new/newly identified busy streets where people may spend 1 hour or more close to traffic.

4.3 Roads with a High Flow of Buses and/or HGVs.

North West Leicestershire District Council confirms that there are no

new/newly identified roads with high flows of buses/HDVs.

4.4 Junctions

North West Leicestershire District Council confirms that there are no new/newly identified busy junctions/busy roads.

4.5 New Roads Constructed or Proposed Since the Last Round of Review and Assessment

North West Leicestershire District Council has assessed new/proposed roads meeting the criteria in Section A.5 of Box 5.3 in TG(09), and concluded that it will not be necessary to proceed to a Detailed Assessment.

4.6 Roads with Significantly Changed Traffic Flows

North West Leicestershire District Council confirms that there are no new/newly identified roads with significantly changed traffic flows.

4.7 Bus and Coach Stations

North West Leicestershire District Council confirms that there are no relevant bus stations in the Local Authority area.

5 Other Transport Sources

5.1 Airports

East midlands airport handled 4.6 million passengers and 308,935 tonnes of cargo in 2014

 $\frac{308935}{100000} \cong 3.09mppa$ 3.09 + 4.6 = 7.69 mppa 7.69 < 10mppa

North West Leicestershire District Council confirms that there are no

airports in the Local Authority area requiring a detailed assessment.

5.2 Railways (Diesel and Steam Trains)

5.2.1 Stationary Trains

North West Leicestershire District Council confirms that there are no locations where diesel or steam trains are regularly stationary for periods of 15 minutes or more, with potential for relevant exposure within 15m.

5.2.2 Moving Trains

North West Leicestershire District Council confirms that there are no locations with a large number of movements of diesel locomotives, and potential long-term relevant exposure within 30m.

5.3 **Ports (Shipping)**

North West Leicestershire District Council confirms that there are no ports or shipping that meet the specified criteria within the Local Authority area.

6 Industrial Sources

6.1 Industrial Installations

6.1.1 New or Proposed Installations for which an Air Quality Assessment has been Carried Out

North West Leicestershire District Council confirms that there are no new or proposed industrial installations for which planning approval has been granted within its area or nearby in a neighbouring authority.

6.1.2 Existing Installations where Emissions have Increased Substantially or New Relevant Exposure has been Introduced

North West Leicestershire District Council confirms that there are no industrial installations with substantially increased emissions or new

relevant exposure in their vicinity within its area or nearby in a neighbouring authority.

6.1.3 New or Significantly Changed Installations with No Previous Air Quality Assessment

North West Leicestershire District Council confirms that there are no new or proposed industrial installations for which planning approval has been granted within its area or nearby in a neighbouring authority.

6.1.4 Major Fuel (Petrol) Storage Depots

There are no major fuel (petrol) storage depots within the Local Authority area.

6.2 **Petrol Stations**

North West Leicestershire District Council confirms that there are no petrol stations meeting the specified criteria.

6.3 Poultry Farms

North West Leicestershire District Council confirms that there are no poultry farms meeting the specified criteria.

7 Commercial and Domestic Sources

7.1 Biomass Combustion – Individual Installations

North West Leicestershire District Council confirms that there are no biomass combustion plant in the Local Authority area.

7.2 Biomass Combustion – Combined Impacts

North West Leicestershire District Council confirms that there are no biomass combustion plant in the Local Authority area.

7.3 Domestic Solid-Fuel Burning

North West Leicestershire District Council confirms that there are no areas of significant domestic fuel use in the Local Authority area.

8 Fugitive or Uncontrolled Sources

North West Leicestershire District Council confirms that there are no potential sources of fugitive particulate matter emissions in the Local Authority area.

9 Implementation of Action Plans

The council has recently adopted a new action plan framework document and is currently working with Leicestershire County Council to draw up schemes for assessment inline with the framework.

10 Conclusions and Proposed Actions

10.1 Conclusions from New Monitoring Data

No exceedences where recorded outside of existing AQMAs

10.2 Conclusions from Assessment of Sources

There are no sources requiring detailed assessment

10.3 Proposed Actions

- Progress action plan
- Submit 2016 Progress report.

11 References

 Previous Review and Assessment Reports North West Leicestershire District Council, 2003a, Air Quality Stage 4 Review and Assessment. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]

- [2] North West Leicestershire District Council, 2003b, Air Quality Updating and Screening Assessment 2003. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [3] North West Leicestershire District Council, 2005a, Air Quality Detailed Assessment. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [4] North West Leicestershire District Council, 2005b, Air Quality Progress Report 2005. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [5] North West Leicestershire District Council, 2006, Air Quality Updating and Screening Assessment 2006. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [6] North West Leicestershire District Council, 2007, Air Quality Detailed Assessment for Coalville and Castle Donington. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [7] Conestoga-Rovers & Associates (Europe) Ltd, 2008, Air Quality Progress Report 2008 Report No. 933628. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [8] Conestoga-Rovers & Associates (Europe) Ltd, 2009a, Air Quality Detailed Assessment For East Midlands Airport Report No.933690-1. Coalville: North West Leicestershire District Council. Available at:

https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment [Accessed 04/01/2016]

- [9] Conestoga-Rovers & Associates (Europe) Ltd, 2009b, Air Quality Detailed Assessment For Copt Oak Report No. 933690-2-RPT2. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [10] Conestoga-Rovers & Associates (Europe) Ltd, 2009c, Air Quality Further Assessment Of Bardon Road AQMA, Coalville Report No. 933690-2-RPT3. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [11] Conestoga-Rovers & Associates (Europe) Ltd, 2009d, Air Quality Further Assessment of Castle Donington AQMA Report No.933690-4. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]North West Leicestershire District Council, 2009e, Air Quality Update and Screening Assessment 2009. Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]North West Leicestershire District Council, 2010a, Air Quality Progress Report 2010, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]North West Leicestershire District Council, 2010a, Air Quality Progress Report 2010, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [12] North West Leicestershire District Council, 2010b, Air Quality Detailed Assessment for SO₂, Coalville: North West Leicestershire District Council Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [13] North West Leicestershire District Council, 2011a, *Air Quality Detailed Assessment of Coalville AQMA*, Coalville: North West Leicestershire District

Council. Available at:

https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment [Accessed 04/01/2016]

 [14] North West Leicestershire District Council, 2011b, Air Quality Detailed Assessment of M1 AQMA, Coalville: North West Leicestershire District Council. Available at:

https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment [Accessed 04/01/2016]

- [15] North West Leicestershire District Council, 2011c, Air Quality Progress Report 2011, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [16] North West Leicestershire District Council, 2011d, 2011 Air Quality Detailed Assessment of 1-hour Mean Air Quality Standard at Broomleys junction Coalville, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [17] North West Leicestershire District Council, 2012a, 2012 Air Quality Update and Screening Assessment 2012, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [18] North West Leicestershire District Council, 2012b, 2012 Air Quality Detailed Assessment of Annual Mean Air Quality Standard at Castle Donington, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [19] North West Leicestershire District Council, 2012c, 2012 Air Quality Further Assessment of Annual Mean Air Quality Standard at Copt Oak, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]

- [20] North West Leicestershire District Council, 2012d, 2012 Air Quality Detailed Assessment of Annual Mean Air Quality Standard at Kegworth, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [21] North West Leicestershire District Council, 2013, 2013 Air Quality Further Assessment of Coalville AQMA, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]
- [22] North West Leicestershire District Council, 2014, 2014 Air Quality Progress Report, Coalville: North West Leicestershire District Council. Available at: <u>https://www.nwleics.gov.uk/pages/local_air_quality_review_and_assessment</u> [Accessed 04/01/2016]

11.1 Acts and Statutory Instruments and orders

- [23] Environment Act 1996 (c. 25), London: Her Majesty's Stationary Office Available at: <u>http://www.legislation.gov.uk/ukpga/1995/25/contents</u> [Accessed 04/01/2016]
- [24] Air Quality (England) Regulations 2000 SI 2000/0928, London: HMSO Available at: <u>http://www.legislation.gov.uk/uksi/2000/928/contents/made</u> [Accessed 04/01/2016]]
- [25] Air Quality (England) (Amendment) Regulations 2002 SI 2002/3043, London: HMSO. Available at: <u>http://www.legislation.gov.uk/uksi/2002/3043/contents/made</u> [Accessed 04/01/2016]
- [26] The Air Quality Standards Regulations 2007 SI 2007/0717, London: HMSO Available at <u>http://www.legislation.gov.uk/uksi/2007/64/contents/made</u> [Accessed 04/01/2016]
- [27] The Air Quality Standards Regulations 2010 SI 2010/1001, London: HMSO. Available at <u>http://www.legislation.gov.uk/uksi/2010/1001/contents/made</u> [Accessed 04/01/2016]

- [28] North West Leicestershire District Council Air Quality Management Order 2009 (No. 1), 2009 Coalville: North West Leicestershire District Council. Available at <u>http://www.nwleics.gov.uk/pages/air_quality_managment_area_copt_oak</u> [Accessed 04/01/2016]
- [29] North West Leicestershire District Council Air Quality Management Order 2008 (No. 1), 2008, Coalville: North West Leicestershire District Council. Available at <u>http://www.nwleics.gov.uk/pages/air_quality_managment_area_castle_doningto</u> <u>n</u> [Accessed 04/01/2016]
- [30] North West Leicestershire District Council Air Quality Management Order 2008 (No. 2), 2008, Coalville: North West Leicestershire District Council. Available at <u>http://www.nwleics.gov.uk/pages/air_quality_managment_area_coalville</u> [Accessed 04/01/2016]
- [31] The North West Leicestershire District Council (Kegworth Air Quality Management Area) Order 2001, 2001, Coalville: North West Leicestershire District Council Available at <u>http://www.nwleics.gov.uk/pages/air_quality_managment_area_high_street_keg</u> worth [Accessed 04/01/2016]
- [32] North West Leicestershire District Council (M1 Air Quality Management Area) Order 2001, 2001, Coalville: North West Leicestershire District Council Available at <u>http://www.nwleics.gov.uk/pages/m1_mole_hill_farm_kegworth</u> [Accessed 04/01/2016]
- [33] M1 Air Quality Management Area (nitrogen dioxide) Revocation Order 2004, 2004, Coalville: North West Leicestershire District Council Available at <u>http://www.nwleics.gov.uk/pages/m1_mole_hill_farm_kegworth</u> [Accessed 04/01/2016]
- [34] Air Quality Management Area (Nitrogen Dioxide) Amendment Order 2011 (No.1), 2011, Coalville: North West Leicestershire District Council Available at <u>http://www.nwleics.gov.uk/pages/m1_mole_hill_farm_kegworth</u> [Accessed 04/01/2016]
- [35] Air Quality Management Area (Nitrogen Dioxide) Amendment Order 2011 (No.)2, 2011, Coalville: North West Leicestershire District Council Available at

http://www.nwleics.gov.uk/pages/air_quality_managment_area_coalville [Accessed 04/01/2016].

11.2 British Standards

- [36] British Standards Institution, 2007. BS EN 15259:2007 Air quality. Measurement of stationary source emissions. Requirements for Progress Report 32 measurement sections and sites and for the measurement objective, plan and report. Milton Keynes: BSI
- [37] British Standards Institution 2007. BS ISO 4226:2007 Air quality. General aspects. Units of measurement. Milton Keynes: BSI

11.3 Technical guidance

- [38] Department for Food and Rural Affairs, 2009, *Local Air Quality Management Technical Guidance LAQM.TG(09)*. Department for Food and Rural Affairs
- [39] Department For Environment Food and Rural Affairs. 2010. Errata to LAQM.TG(09): Is the example in Box 2.1 of TG(09) correct? London: Department for Environment Food and Rural Affairs.[Online] Available at <u>http://laqm2.defra.gov.uk/supportguidance/</u> [accessed 15/02/2011]
- [40] Department for Food and Rural Affairs, 2009. *Local Air Quality Management Policy Guidance LAQM.PG(09).* London: Department for Food and Rural Affairs
- [41] Department for Food and Rural Affairs, 2003. Local Air Quality Management Technical Guidance LAQM.TG(03). London: Department for Food and Rural Affairs

11.4 Other Documents

- [42] AEA, 2007a, National Atmospheric Emissions Inventory. <u>www.naei.org.uk</u> Department for Food and Rural Affairs
- [43] AEA, 2010, Quality assurance/quality control (QA/QC) framework. [Online]
 London: Department for Environment, Food and Rural Affairs. Available at: <u>http://laqm1.defra.gov.uk/review/tools/NO₂/qa-qc.php</u> [Accessed 21/03/2011]
- [44] Bureau Veritas, 2011, *National Diffusion Tube Bias Adjustment Factor Spreadsheet*. [online] London: Department for Environment Food and Rural

Affairs. Available at: <u>http://laqm.defra.gov.uk/bias-adjustment-factors/bias-adjustment.html</u> [Accessed 04/01/2016]

- [45] Department for Food and Rural Affairs, 2007, The Air Quality Strategy for England, Scotland, Wales and Northern Ireland. CM 7169 NIA 61/06-07, London: Her Majesty's Stationary Office.
- [46] Department for Transport, 2008. Annual Average Daily Traffic Flows. London: Department for Transport <u>http://www.dft.gov.uk/matrix</u>
- [47] Highways Agency, 1992 (updated June 2010). Design Manual for Roads and Bridges Volume 11, Section 3 Environmental Assessment Progress Report 34 Techniques. Birmingham: Highways Agency. Available at: <u>http://www.standardsforhighways.co.uk/dmrb/index.htm</u> [accessed 25/10/2010].
- [48] Laxen & Marner. 2003. Analysis of the Relationship between 1-Hour and Annual Mean Nitrogen Dioxide at UK Roadside and Kerbside Monitoring Sites. Available from DEFRA,.
- [49] Office for National Statistics, updated 30 January 2013, *Population Density,* 2011 (QS102EW). [online] Available at: <u>http://neighbourhood.statistics.gov.uk/dissemination/LeadTableView.do?a=3&b</u> =6275189&c=LE67+3FJ&d=13&e=61&g=6445343&i=1001x1003x1032x1004& <u>m=0&r=0&s=1363603753470&enc=1&dsFamilyId=2491</u> North West Leicestershire District Council, updated 30th April 2012, Diffusion Tube Data [Online]. Available at: <u>http://www.nwleics.gov.uk/pages/air_quality_monitoring_NO₂_diffusion_tubes
 </u>
- [50] North West Leicestershire District Council, updated 30th April 2012, Automatic Monitoring Data [Online]. Available at: <u>http://www.nwleics.gov.uk/pages/air_quality_realtime_monitoring</u>

12 Appendices

Appendix A. Appendix A: QA/QC Data QA/QC of automatic monitoring

The analyser at Coalville is an API 200 chemiluminescence analyser,

Routine instrument calibrations are conducted once per month, which involve zero and span checks, a written record of the gas analyser diagnostics and a general visual inspection of all equipment is undertaken.

Data retrieval and daily data checking

Data from the monitoring station is retrieved and processed on a data logger as 15-minute mean data. The logger is interrogated via a Siemens TC35i GSM modem at 8-hourly intervals by the ENVIEW 2000 software hosted at TRL. This is used to retrieve, check and archive data.

TRLs internal QA/QC procedures require all data to be backed up on a secure server and all documentation associated with each site to be uniquely identified and securely stored to provide an audit trail.

Daily data inspections are undertaken during office hours using the facilities of the Data Management System. Initial observations of the Management System indicate whether the site has been contacted during its nominated 'poll time' overnight. If this has not been successful a manual poll of the site may be required. If this is not successful further investigation of the communications integrity will be required to establish contact with the site modem and data logger.

Three day plots of recorded data are viewed for the requested site, and these are inspected and assessed for continuity, validity, minimum and maximum values, date and time, power failures and general integrity. All anomalies are recorded on the Daily Check sheet, as required. Any anomalies or queries arising from daily inspection of data, or system operation, are brought to the attention of the Project Manager who will evaluate the situation, and initialise any necessary action. In the event that the PM is not available, contact will be made with the next available senior person within the monitoring team. Any issues identified with equipment operation will be referred to the client for attention within 24 hours (excluding weekends).

On a weekly basis, data are examined using summary statistics and outlier analysis to establish data validity. In the event that unusual data episodes are recorded, these would be routinely examined over longer data periods to establish their impact on trends, but would also be cross referenced with data peaks and troughs recorded at other national monitoring stations. In addition, integrity and validity of data logger clock times are checked, and any significant errors recorded in the Data Management System logbook.

All site data recorded through the Data Management System is archived on TRLs Network. The data is backed up daily, and the TRL IT Department maintains these data within their long-term and secure archives. This secures all data in the event of any system failure.

Data calibration and ratification

Data is ratified as per AURN recommended procedures. The calibration and ratification process for automatic gas analysers corrects the raw dataset for any drift in the zero baseline and the upper range of the instrument. This is done using a Microsoft Excel-based calibration and ratification file which incorporates the zero and span check information from the calibration visits. The zero reading recorded during the calibration visits is used to adjust any offset of the baseline of the data. The difference between the span value obtained between one calibration visit and the next visit is used to calculate a factor. This change is assumed to occur at the same rate over the period between calibrations and as such the factor is used as a linear data scaler. This effectively results in the start of the period having no factor applied and the end of the period being scaled with the full factor with a sliding scale of the factor in-between. After applying the calibration factors, it is essential to screen the data, by visual examination, to see if they contain any unusual measurements or outliers. Errors in the data may occur as a result of equipment failure, human error, power failures, interference or other disturbances. Data validation and ratification is an important step in the monitoring process. Ratification involves

considerable knowledge of pollutant behaviour and dispersion, instrumentation characteristics, field experience and judgement.

On completion of this data correction procedure, these data were converted to hourly means and a summary of these data were provided to North West Leicestershire District Council.

Appendix B. Monthly Diffusion Tube, façade correction, and annualisation Data

Full details and results of Diffusion Tube monitoring in North West Leicestershire is available from the councils website

http://www.nwleics.gov.uk/pages/air_quality_monitoring_no2_diffusion_tubes

Appendix C. Automatic Monitoring Data

Full details and results of Automatic monitoring in North West Leicestershire is available from the councils website

http://www.nwleics.gov.uk/pages/air_quality_realtime_monitoring